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Abstract
The memory hierarchy continues to have a substantial effecton
application performance. This paper explores the potential of high-
level application understanding in improving the performance of
modern memory hierarchies, decomposing the often-chaoticad-
dress stream of an application into multiple more regular streams.
We present two orthogonal methodologies. The first is a system
called DTrack that decomposes the dynamic reference streamof
a C program by tagging each reference with its global variable or
heap call-site name. The second is a technique to determine the
correct granularity at which to study the global phase behavior of
applications. Applying these twin analysis methods to twelve C
SPEC2000 benchmarks, we demonstrate that they reveal data struc-
ture interactions that remain obscured with traditional aggregation-
based analysis methods. Such a characterization creates a rich pro-
file of an application’s memory behavior that highlights themost
memory-intensive data structures and program phases, and we il-
lustrate how this profile can lead system and application designers
to a deeper understanding of the applications they study.

Categories and Subject Descriptors B.8 [Performance and Re-
liability ]: Performance Analysis and Design Aids; C.4 [Perfor-
mance of Systems]: Measurement techniques

General Terms Design, Experimentation, Measurement

Keywords Simulation, Data structure, Phase, SPEC, CPU2000,
DTrack

1. Introduction
As a result of application and computer system design trends, the
memory system continues to exert a dominant influence on pro-
gram performance. The importance of memory system behavior
will continue to grow as the gap between memory speeds and pro-
cessor speeds increases. In addition, applications are continuing to
grow in complexity, which places additional burden on the memory
system due to large or irregularly accessed data structures. Under-
standing how applications use the memory system is important to
at least three groups: (1) system designers who can apply insights
into memory system usage to improve hardware and software mem-
ory optimization techniques, (2) application writers who can under-
stand how their program uses the memory system and optimize for
better locality, and (3) benchmark developers who want to ensure
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that the diverse patterns of behavior in realistic applications are
represented. In this study we explore the benefits of programun-
derstanding along two orthogonal dimensions - data structure and
program phase - and show how such insights can be combined to
yield a rich picture of application behavior.

Analyzing memory behavior is a well-trodden field; this paper
makes three novel contributions to it. First, we develop a tool called
DTrack to decompose the performance of the memory hierarchy
by high-level data structure for C programs. DTrack uses a C-to-C
compiler to instrument variable allocations, thereby allowing each
memory reference to be mapped to a specific global variable or
heap call-site. Second, we fill a gap in recent studies on phase be-
havior: selecting the correct profiling interval for an application, the
granularity at which behavior statistics are aggregated. While stud-
ies on phase behavior so far use a single, arbitrarily-chosen profil-
ing interval for all applications, we show that the profilinginterval
is best selected on an application-specific basis. Finally,we apply
our methodologies to twelve of the fifteen C benchmarks in the
SPEC2000 benchmark suite, and present a detailed characterization
of their memory behavior. Our results highlight the wide variety of
behaviors exhibited by applications in the distribution ofmisses by
data structure, as well as in the number and interleaving of different
phase regimes. Several case studies demonstrate the usefulness of
these results in helping the computer architect make sophisticated
design decisions.

The remainder of this paper is organized as follows. Section2
distinguishes our work from prior memory system analysis studies
and tools. Section 3 describes DTrack and demonstrates its abil-
ity to decompose the aggregate behavior of applications by data
structure. This Section also describes two case studies that illustrate
the uses of DTrack in framing and rapidly answering sophisticated
questions in designing new systems. Section 4 takes our analysis
further, decomposing the address streams of applications by both
data structure and time. A major contribution here is a new way
to determine the right granularity at which to sample phase data,
and we show that this granularity varies from application toap-
plication. Finally, Section 5 provides conclusions and thoughts on
future work.

2. Related work
Conventional methodology for characterizing applications involves
either cache or timing simulation [1, 9, 22, 3]. These techniques
operate at the level of the application executable without recourse
to the high-level structure of the program. As a result, their output is
limited to aggregate statistics about hardware execution,such as the
mean number of instructions executed per clock cycle, miss-rates at
the various cache hierarchies, and similarhardwareevents. In this
paper we decompose these aggregate statistics by data structure and
by program phase. We now review the prior work in each of these
areas.



asm ("mop") ;

struct foo bar ;

void main () {

     NAME = "f2" ;
     PTR = f2 ;
     SIZE = sizeof (struct foo) ;

     f2 = malloc (sizeof (struct foo)) ;

}

asm ("mop") ;

FILE.print ("bar", &bar, sizeof (bar)) ;

    addLayout () ;
}

if (inst == mop) {
}

struct foo bar ;

void main () {
     f2 = malloc (struct foo) ;

c−breeze

sim−alpha

cc

Figure 1. DTrack, a tool for observing data structures in programs

2.1 Decomposing memory behavior by data structure

Tools have been created in the past to decompose applicationmem-
ory performance by data structure, but they have thus far been
restricted to studying arrays. The original such tool is MemSpy
by Martonosi et al. [13] which operated on loop nests in Fortran
programs. Similarly, Lebeck et al. [12] present data structure and
procedure level aggregate miss information and classify misses as
compulsory, capacity and conflict. While these tools present sev-
eral software optimizations for improving cache performance, they
examine the behavior of an array within the context of a single pro-
cedure. As a result, they do not perform cross data structureanaly-
sis. For example, they do not consider the question of whether data
structures interfere with themselves or with others.

McKinley and Temam analyze the complementary dimension
of inter-nest and intra-nest loop locality [14], but again consider
only arrays and aggregate information between loop nests. Seidl
and Zorn [18] use a technique similar to ours to partition theheap
into segments based on object lifetimes, without performing the
more fine-grained analysis to separate the behavior of objects by
data structure that we do.

2.2 Analyzing time-varying behavior and detecting phases

Several tools have studied time-varying behavior. The Cache Visu-
alization Tool [25] demonstrates the time-varying behavior of ar-
rays as they march through the cache. This level of detail supports
analyzing a single loop nest at a time, whereas we analyze data
structure phase behavior across much longer periods. Chilimbi et
al. [4, 17] analyze compressed program traces, decompose them
into hot data streams, and use these hot data streams to drive lay-
out and prefetching optimizations. This approach of searching for
access patterns across the different data structures in a program is
complementary to ours, which attempts to decompose application
access patterns by data structure. We believe our approach is more
effective at providing intuitions about application behavior that are
useful to humans in different roles.

More recently, several studies have used some form of code sig-
nature to detect phase boundaries. Basic Block Vectors (BBVs) are
currently the most accurate method to generate code signatures, and
several studies explore their uses in clustering phases anddetecting
phase transitions in an offline [20, 19] and online [21] setting. One
alternative to BBVs is the use of program counter or ExtendedIn-
struction Pointer Vectors (EIPVs) [2], whose merits have been de-
bated by Lau et al. [10]. Another alternative consists of more high-
level metrics based on code structure, such as register use vectors
or loop vectors [11]. All these studies, however, select an arbitrary
sampling period and use it for all the applications they evaluate. In
this study we provide a more rigorous method to separately deter-
mine the correct sampling period for each application.

Perhaps the most similar work to ours is the online phase detec-
tor of Nagpurkar et al. [15]. Their system maintains a current win-

dow of object references within a JVM and assesses the similarity
of the recent references in it to those in an older trailing window.
Like our study they evaluate the effect of window size (sampling
interval) on phase detection. While our study looks for phases in
fine-grained behavioral statistics of an application, theystudy phase
behavior in the functional list of object references touched by an
application. The two approaches are complementary.

3. Decomposing behavior by data structure
This section describes DTrack and our methodology for analyz-
ing applications, and performs a detailed analysis of the data struc-
tures of twelve applications. DTrack maps addresses to datastruc-
tures by automatically inserting instrumentation in the application
to communicate the address range corresponding to each variable
to the simulator. The challenge here is to keep the overhead due
to the instrumentation low and to minimize the perturbance to the
application. Figure 1 shows a schematic of our tool. First, we auto-
matically instrument benchmark sources using an extensionto the
C-Breeze [7] C-to-C compiler. We then simulate them on a mod-
ified version of the sim-alpha [6] timing simulator that simulates
the configuration shown in Figure 2, including a Rambus memory
model. For each variable in the program, the compiler-generated
instrumentation stores the variable’s name and address at adesig-
nated location in memory and interrupts the simulator by means of
a special opcode (“mop” in Figure 1). On executing this instruction
at runtime, the simulator imports the information from thisdesig-
nated location in simulated memory. Since the simulator knows the
extent of each variable in the application at any time, it maps the
address of each cache access to a specific variable. Classifying and
assigning each load and store to a specific variable slows thesimu-
lator down by 60% on average and 100% in the worst case.

We track both heap allocations and deallocations because the
same raw address could be allocated to different data structures at
different times in a program’s execution. Since we classifyheap
allocations according to their static location in the source code, we
cannot distinguish between instances of a data structure, such as
two linked lists whose nodes are allocated at the same line inthe
source. This issue is not a concern in studying the C SPEC2000
benchmarks because the major data structures do not have multiple
instances. Other languages and benchmarks may require moreelab-
orate heuristics. Global variables are handled differently. Rather
than communicate them individually to the simulator by the above
method, the instrumentation writes the names and extents ofall
global variables to a designated file on program initialization.
Though the set of file writes is expensive, it is a one-time startup
cost. Finally, stack variables are not instrumented because the high
frequency of scope changes would raise the instrumentationover-
head too much. Instead, we treat the stack as a single data structure
and coalesce all accesses to it by a simple range test. Our results
below show that misses to the stack are generally negligible. We



Feature Size/Value
Data caches
DL1 cache 64 KB, blocksize 64 bytes, 2-way,

3 cycles
L2 cache 512 KB, blocksize 64 bytes,

direct-mapped, 12 cycles
TLBs 128 entries
Main memory
Peak bandwidth 1.6Gbytes/s
Rambus geometry 64 banks * 512 rows * 2KB/row
Access latency (cycles) 32 PRER + 24 ACT + 48 RD/WR

+ queuing
Out-of-order Processor
Pipeline width 4
Int ALUs, multipliers 4,4
FP ALUs, multipliers 1,1
Branch predictor Tournament, 1 KB x 1 KB local,

4 KB global, 4 KB choice

Figure 2. Details of the simulated Alpha 21264-like processor and
memory hierarchy

Benchmark IPC DL1 L2
Miss-rate Miss-rate

164.gzip 1.39 2.3 3.9
175.vpr 0.67 3.0 35.3
176.gcc 1.15 3.2 10.4
177.mesa 1.06 0.9 23.4
179.art 0.23 14.8 74.9
181.mcf 0.14 24.1 60.5
183.equake 0.58 14.1 29.4
186.crafty 1.21 1.3 4.3
188.ammp 0.57 10.0 45.0
197.parser 0.97 3.6 21.5
256.bzip2 1.16 2.1 32.6
300.twolf 0.51 9.5 26.9

Figure 3. The benchmarks we use and their aggregate memory
hierarchy behavior

verify that our instrumentation does not perturb application behav-
ior; dynamic instruction counts increase by less than 0.6% across
all benchmarks except for164.gzip, where the instrumentation is
3.7% of the total instruction count because of frequent heapalloca-
tions in the inner loops.

3.1 Benchmarks, inputs and simulation periods

We now describe our methodology for performing detailed anal-
yses of applications from a memory system perspective. First we
describe techniques to map addresses to data structures while min-
imizing the degree to which we perturb underlying application be-
havior. We then move to phase analysis and describe our technique
for selecting the profile period for each of our applications. Finally,
we describe the machine configuration we simulate in our char-
acterization, the simulation periods we choose, and the aggregate
statistics for our benchmarks that can be gleaned from conventional
tools.

This paper presents a characterization of twelve of the fifteen C
benchmarks in the SPEC2000 benchmark suite. Figure 3 lists some
aggregate properties of the benchmarks we study, includingaver-
age instructions per cycle (IPC) and miss-rates at the level-1 data
(DL1) and level-2 (L2) caches. Our benchmarks range from regu-

lar ones such as179.art to highly irregular ones such as300.twolf,
from compute-bound (164.gzip) to memory-bound (181.mcf). We
are unable to study the remaining 3 C benchmarks in the SPEC2000
suite due to methodological difficulties;253.perlbmk no longer
builds on our Alpha platform with the latest version of libc,and
254.gap and255.vortex run incorrectly on our native Alpha plat-
form because of unaligned addresses generated by their custom
memory-managers. While these unaligned addresses could befixed
by modifying the benchmark sources, we estimate that addingthe
necessary padding could significantly perturb benchmark behavior.

All our simulations use the designated ref input set for the cor-
responding benchmark. We demarcate the end of initialization by
a special opcode using the techniques outlined above, and perform
fast functional simulation until we reach this opcode. Thereafter
we perform detailed timing simulation for 500 million instructions.
These simulation periods are representative of each application’s
runtime, as determined in the course of our study of global phase
behavior later in this paper.

3.2 Data profiles and distributions

Having described DTrack and our experimental methodology,we
now present a detailed characterization of the above SPEC bench-
marks using DTrack. We begin by studying basic data profiles gen-
erated by DTrack, and then explore two ways that this new capabil-
ity to visualize the behavior of different data structures can be used
to help answer sophisticated architectural questions.

DTrack generates data profiles. Figure 4 breaks down the ag-
gregate memory behavior of our applications – accesses and miss-
rates at the DL1 and L2 – by the three data structures that cause the
most DL1 misses (DS1, DS2, DS3), the stack, and everything else.
Figure 4.a shows that the breakdown of accesses to the DL1 (and
therefore the rest of the memory hierarchy) varies greatly across
our applications. While179.art and181.mcf have skewed distri-
butions, with 80% of all accesses coming from 2 data structures,
176.gcc and186.crafty have extremely balanced distributions; no
data structure contributes more than 2% of accesses. Other applica-
tions lie between these extremes.

While accesses are often spread out, Figure 4.b shows that
misses tend to cluster. The top 5 data structures usually contribute
more than 90% of all DL1 misses. The exceptions are176.gcc,
186.crafty, and197.parser with a long tail of minor data structures
that respectively end up accounting for 84%, 67% and 78% of
all cache misses. Among the other applications, the major data
structures end up partitioning cache misses among themselves in
a variety of ways; the top data structure can contribute anywhere
between 20 and 80% of total cache misses.

Comparing Figures 4.a and 4.b, we see that cache misses and
accesses are poorly correlated. A few applications such as179.art
and181.mcf reveal a simple underlying organization with only a
few data structures, and misses tracking the distribution of accesses.
However, the majority of applications show a well-understood pat-
tern where a data structure receives more accesses than another, yet
accounts for fewer misses. In particular, the stack accounts for a
significant fraction of accesses without ever presenting a significant
problem to the DL1. The sole exception is186.crafty where the
stack collectively contributes more misses than any singleglobal
data structure. As we have seen, however,186.crafty has a very
balanced distribution, and the stack still accounts for only 11% of
DL1 misses.

3.3 Access pattern variety

So far we have looked at differences in miss distribution across the
major data structures in the different SPEC benchmarks while hid-
ing details about the individual data structures behind theanony-
mous names DS1, DS2 and DS3. Figure 5 now summarizes the
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Figure 4. Decomposition of DL1 and L2 behavior by data structure. Horizontal lines in the miss-rate graphs indicate the aggregatemiss rate
for each benchmark across all data structures. L2 misses show similar trends to DL1 misses.

high-level details of these data structures. For each benchmark, we
show the name of these data structures as used in the source code,
along with a brief summary of the type of the data structure (ar-
ray or recursive), whether it is predominantly accessed in aregular
fashion with spatial locality or in an irregular fashion with low spa-
tial locality. Finally, we provide the size of each object inthese data
structures and their total sizes in the application.

Figure 5 shows that the major data structures are predominantly
array-based in the applications we study. However, these data struc-
tures are often used to emulate complex graphs using either real
pointers (181.mcf:nodes, 175.vpr:rr node) or integers that in-
dex into other arrays (256.bzip2:quadrant, 300.twolf:rows). The
wide variety of uses indicate that data structures are oftendeclared
to be arrays solely to simplify memory management. Most of the
major data structures are dynamically allocated on the heap. The
major exceptions are186.crafty that causes a significant fraction
of misses to the global segment, and176.gcc which allocates most
of its variables on the stack usingalloca.

While 179.art and 183.equake have regular access patterns,
the others interleave spatial and pointer access in complexways.
This interleaving may happen either because of strided access
through an array while dereferencing pointer fields from each
element (mcf:nodes, 188.ammp:atoms), or because of strided
access that uses the elements of one array to index into another
(bzip2:quadrant, 300.twolf:rows) in a form of pointer traversal
that current pointer prefetching schemes [16, 5] often cannot detect,
or finally because the program accesses the elements of a datastruc-
ture in irregular order, but each object spans multiple cache blocks
that are accessed sequentially (ammp:nodelist, twolf:netptr)
due to large object size or irregular object alignment in thecache.
Such complex interleavings are a challenge to both spatial and
pointer-based prefetch systems.

Having used the basic capabilities of DTrack to characterize our
applications, we now explore novel uses of DTrack in asking and
answering sophisticated questions on architecture design.

3.4 Case study: Data structure criticality

Our first case study concerns criticality of memory reference. Sev-
eral recent studies have shown that not all cache misses are equally
important as measured in the amount of latency that they expose
to the processor [24]. In this context, does it make sense to simply
use miss counts to select the data structures on which to focus our
attentions? To answer this question we augment DTrack to detect
cycles when no instructions are retired, and assign responsibility for
each suchstall cycleto the data structure referenced by the load or
store at the head of the reorder buffer [23]. Our results showthat for
our applications the data structures that cause the most misses are
almost always also the ones responsible for the most stall cycles.
There are two exceptions to this trend. The first is in179.art; the
arraytds causes only 2.1% of all cache misses, but is responsible
for 16.6% of all stall cycles. This data structure is critical because
of the following loop that accumulates a subset of its elements:

for (tj=0;tj<numf2s;tj++) {
if ((tj == winner)&&(Y[tj].y > 0))

tsum += tds[ti][tj] * d;
}

This combination of data-dependent branches and computation
serialized bytsum causes the infrequent cache misses in this loop
to almost invariably stall the pipeline. Our conclusion is strength-
ened by a study of the source code.179.art is a neural network sim-
ulator where learning occurs by iteratively modifying two arrays
of top-down and bottom-up weights –tds andbus respectively.
While these two arrays are largely accessed in very similar ways,
the above loop is the only major access pattern not shared withbus.
The second data structure that we observe causing a disproportion-
ate number of stalls is the variablesearch in the chess-playing
benchmark186.crafty, which is responsible for 10.5% of all stall
cycles in spite of causing just 0.2% of all cache misses. Thisglobal
data structure contains the chess position being currentlyanalyzed,
and is used to display the board on screen. With the exceptionof



Benchmark DS1 DS2 DS3
164.gzip window prev fd

array – regular array – regular array – regular
64 KB in 2-byte objects 64 KB in 2-byte objects 184320 KB in 1-byte objects

175.vpr rr node heap rr node route inf
array – irregular array – irregular array – irregular

10638 KB in 40-byte objects 6717 KB in 24-byte objects 2653 KB in 16-byte objects
176.gcc reg last sets reg last uses qty const insn

array – irregular array – irregular array – irregular
0.5 KB in 8-byte objects 0.5 KB in 8-byte objects 4 KB in 8-byte objects

177.mesa Image Buffer Depth Buffer Vertex Buffer
array – regular array – regular array – regular

2560 KB in 2-byte objects 5120 KB in 4-byte objects 920 KB in 1 object
179.art f1 layer bus tds

array – regular array – regular array – regular
625 KB in 64-byte objects 859 KB in 8-byte objects 859 KB in 8-byte objects

181.mcf nodes arcs dummy arcs
array – regular & irregular array – irregular array – irregular

7071 KB in 120-byte objects 188416 KB in 64-byte objects 3771 KB in 64-byte objects
183.equake K disp M

3D array – regular 3D array – regular 2D array – regular
22399 KB in 8-byte objects 2828 KB in 8-byte objects 943 KB in 8-byte objects

186.crafty rook attacks rl90 last ones first ones
array – irregular array – irregular array – irregular

128 KB in 8-byte objects 64 KB in 1-byte objects 64 KB in 1-byte objects
188.ammp atoms nodelist atomlist

pointer – regular & irregular array – regular array – regular
41322 KB in 2208-byte objects 76 KB in 232-byte objects 4372 KB in 232-byte objects

197.parser Connector Disjunct table
various – irregular various – irregular various – irregular

variable allocation in 24-byte objects variable allocation in 40-byte objects variable allocation in 40-byte objects
255.bzip2 block quadrant zptr

array – irregular array – irregular array – irregular
900 KB in 1-byte objects 1800 KB in 2-byte objects 3600 KB in 4-byte objects

300.twolf net array[]→netptr tmp rows rows
pointer – irregular array – irregular array – irregular

253 KB in 48-byte objects 34 KB in 1-byte objects 34 KB in 1-byte objects

Figure 5. Descriptions of the major data structures in Figure 4. Information on each benchmark for each major data structure: container
type, access pattern, container and element size.

these two data structures, the correlation between miss count and
stall cycle count shows that data-structure criticality isof limited
usefulness in the predominantly irregular programs that westudy.

A related idealization experiment that provides indirect confir-
mation of this result explores the effect of selectively providing
different data structures perfect single-cycle access to memory. To
model this ideal behavior we simulate cache misses to specific data
structures in a single cycle, but continue to move data in these struc-
tures through the memory hierarchy so as to not give other data
structures an unrealistically generous view of cache capacity. We
find that selectively eliminating cache misses in even the most im-
portant data structure in an application has limited impacton bot-
tomline performance in a majority of our applications. While there
are a few exceptions, namely188.ammp, 183.equake, it usually re-
quires perfect memory for 2-5 major data structures to bringperfor-
mance close to ideal. This result shows that future architectural and
compiler enhancements will often need to optimize multipledata
structures in different ways to significantly improve overall perfor-
mance in memory-bound applications. It also shows that DTrack
is indeed highlighting bottlenecks in the memory system when it
ranks data structures by miss frequency.

16
4.

gz
ip

16
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f

0

50

100

diff
same

Evictions of useful data (Normalized)

Figure 6. Breakdown of premature evictions. Useful data is only
infrequently evicted by a different (diff) data structure.

3.5 Case study: Competition for caches

Where Figures 4.a and 4.b show the distribution of accesses to the
DL1 and L2, Figures 4.c and 4.d show the corresponding miss-rates
at each level of the memory hierarchy. A common pattern in these
figures is for a data structure with fewer cache misses to havea
higher miss-rate. This pattern occurs as the major data structures
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Figure 7. Just tracking total misses can miss interesting effects.
DL1 cache misses in aggregate and by data structure in188.ammp

compete with each other for limited cache capacity, so that adata
structure that misses more often ends up with a larger fraction of
the cache. While this is qualitatively a desirable response, such
competition may cause suboptimal performance if differentdata
structures repeatedly evict each other. If this behavior were found
to be common, a computer architect may consider creating split
caches [8] with static mapping policies assigning each datastruc-
ture to a specific cache partition. Figure 6 shows how often useful
data in the cache is prematurely evicted by a different data struc-
ture as opposed to the same one. With the exception of256.bzip2
the majority of premature evictions are caused by conflict within a
data structure, rendering a split cache by data structure unnecessary
for these applications. This and the previous experiment are good
examples of the ways that DTrack can help the computer architect
with design decisions where traditional tools are unable todo so.

4. Analyzing data structure phase behavior
The previous Section demonstrated that aggregate statistics of
memory performance can hide new interactions between data struc-
tures. We now study the global time-varying behavior of these
statistics for nine of our twelve applications. Studying phase be-
havior by data structure is important; looking at the time-varying
behavior of aggregate misses alone can be misleading and hide
important data structure interactions. Figure 7 illustrates this: the
data structuresatoms andnodelist in 188.ammp are consistently
anti-correlated. As one increases the other decreases and vice versa.
Studying just the curve for total cache misses would miss this inter-
action and also underestimate the degree to which the application’s
behavior is changing under the surface. This pattern is not uncom-
mon; six of our nine applications exhibit significant differences in
data structure miss distribution in different phases.

Our analysis demonstrates two broad properties of the phase
behavior in our applications. First, observable phase behavior is
dependent on the granularity of our observations, so that global
trends are often most salient at a very narrow window ofsampling
periods particular to an application. A bad choice of sampling
period can underemphasize important global phase transitions or
hide them entirely. Second, the phase behavior in most of our
applications, when observed at their optimal sampling periods, has
a regular structure consisting either of dramatic phase transitions or
gradual trends with a well-defined period. We now define necessary
terminology, then describe our novel technique for selecting good
sampling periods, and finally describe these observations in more
detail.

4.1 Process and terminology

Studying phase behavior is an exercise in abstraction. We want to
mask out irregularities in the data and focus on the underlying reg-
ularities. However, no single sampling period can highlight all the
regularities in the data. As Figures 8a,d,g show, the sampling pe-
riod profoundly affects the nature of observable phase behavior in
the data. In this study we focus on global phase behavior, choosing
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Figure 8. The curves corresponding to a stream at different sam-
pling periods, and their volatilities. (183.equake)

to damp out details of fine-grained phase behavior without damping
global transitions.

Our process for studying phase behavior is as follows: We mod-
ify DTrack to emit time-varyingstreamsof miss counts and rates
by data structure at a basesampling period. In this study all our
streams have sampling periods of 1 million cycles. Finer granular-
ities than that generate impractical quantities of data forthe large
simulation periods we simulate, and we postpone a study of fine-
grained local phase behavior at different points in programexe-
cution. The streams we generate can be aggregated to simulate
curvesof different sampling periods, generating curves like Fig-
ures 8a,d,g. At a specific sampling period, we define and compute
a measure ofvolatility at each point on the curve, thus transform-
ing the curve to a corresponding volatility curve as shown inFig-
ures 8b,e,h. We now define the volatility of the curve in terms of
these point volatilities by ranking all the points and selecting the
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Figure 9. Two example curves that have the same volatility. Our
volatility metric is oblivious to coarse-grained phase changes.

volatility of the point at a specific percentile. This process is il-
lustrated in Figures 8c,f ,i. Plotting the volatility of curves corre-
sponding to the same stream at different sampling periods yields the
volatility profile of the stream, and we show how to use the volatil-
ity profile to select a sampling period that damps out fine-grained
‘noise’ but not coarse-grained phase transitions. We are then able to
most clearly observe the global phase behavior of our applications.

4.2 Quantifying the volatility of a stream

Volatility is intuively a measure of the change in magnitudeof
sampled data at adjacent points. We formalize this notion into the
following volatility metric at a given time step. Given a stream
X1, X2, X3 . . ., the volatility at each time step is defined as:

gt =
abs(Xt − Xt−1)

max(Xt, Xt−1)
(1)

gt is similar to the conventional notion of ‘growth’, except that
it is symmetric:gt is 0.5 whetherXt has doubled (“grown by
100%”) or halved (“shrunk by 50%”) since the last time step. This
symmetry ensures that the volatility between two values is the same
regardless of whether the curve grows or shrinks between them.
Computinggt at each time step of a curve, we can transform it
to yield a curve showing the volatity at each point, as shown in
Figures 8a andb.

We now compute the volatility of a curve by ranking the volatil-
ity of its points and selecting the volatility at a specific percentile
(Figure 8c). As Figure 9 illustrates, this metric has the useful prop-
erty that it is affected by the volatity of high-frequency ‘noise’
without taking low-frequency phase transitions into consideration.
What constitutes a low-frequency phase transition is dependent on
the percentile we use, and we empirically find the 90th percentile
to be a reasonable boundary to distinguish between our intuitive
notions of phase boundary and noise. That a curve has volatility V
thus means that 90% of the points on the curve have volatilities of
V or less.

4.3 Volatility profiles and selecting a good sampling period

Given the above volatility metric, we can now study the phasebe-
havior of our applications, and also how this phase behaviorvaries
with sampling period. We summarize the effects of sampling period
on phase changes at all granularities by generating avolatility pro-
file for each application. The volatility profile for a stream plots the
volatility of the curves generated from it at various sampling peri-
ods. Across the applications we study, we find that the DL1 andL2
miss counts for different data structures largely exhibit volatility
profiles with the same trends, and with minima at the same sam-
pling periods. Figure 10 therefore shows the volatility profile for
the DL1 miss stream of a single major data structure in our ap-
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Figure 10. Volatility profiles of some major data structures in our
applications (left), and the corresponding phase behaviorat one
low-volatility sampling period in the profile (right).
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Figure 11. The phase behavior of177.mesa at 10 million cycles.
Compare with Figure 10c.

plications, along with the curve corresponding to a low-volatility
sampling period in each.

While two applications in Figure 10 –181.mcf and300.twolf –
show consistently low profiles so that an arbitrary selection is likely
to highlight global phase behavior, the volatility profilesof the oth-
ers show that the sampling period must be selected carefully. The
graphs on the left-hand side in Figure 10 can be partitioned into two
broad classes of applications: those with monotonically decreasing
volatilities as sampling periods increase, and those wherevolatil-
ity sometimes increases. A monotonically decreasing volatility pro-
file is easily explained by the natural damping effects of aggrega-
tion to ever-increasing sampling periods. Selecting sampling peri-
ods in these cases is as simple as setting a threshold on volatility.
Cases where volatility sometimes increases with sampling period
are more interesting.

At a high level an application consists of nests of loops thatac-
cess different data structures in different ways. The access pattern
of a given data structure in a given loop may contribute a compo-
nent with a certain approximate period to the phase behaviorof the
data structure. Combining all the interacting periodic components
corresponding to a data structure yields the overall phase behav-
ior of that data structure. If all the components for a data structure
have relatively low time periods and high frequencies, we expect
aggregation at high sampling periods to smooth out their disparate
periodic effects. If a stream contains a component with a substan-
tial time period, however, we observe a steeply oscillatingvolatility
profile, with troughs at factors and multiples of that time period.

Such streams with coarse-grained periods make it more diffi-
cult to select a sampling period, requiring volatility measurements
at a large number of values in order to find good candidates. For
example, if a stream is dominated by a a period of 7 million cy-
cles, taking measurements at sampling period increments of10-
million could fail to identify a good sampling period. By thetime
we find low volatility (at a sampling period of 70 million cycles)
we may have damped out all phase behavior. Understanding such
interactions in application phase behavior is a challenge for future
research. In the context of this study, finding a low-volatility sam-
pling period required gradually refining volatility measurements for
177.mesa and188.ammp. As a concrete example of this, Figure 11
shows the phase behavior seen forDepth Buffer in 177.mesa at
a sampling rate of 10 million cycles. Comparing this curve with
that in Figure 10c shows how widely dissimilar different a stream
can look at different sampling periods, and how selecting a bad
sampling period can occlude gradual periodic patterns. Theglobal
phase behavior seen in Figure 10c is only observable in a narrow
window of sampling periods, from 200 to 300 million cycles.

4.4 Types of phase behavior at a good sampling period

Having studied the volatility profiles on the left of Figure 10,
we now study the phase transitions of data structures in these
applications. Across all our applications, different datastructures
share common phase transition points. As a result, we are able to
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Figure 12. Applications with inversion: a different data structure
contributes the most misses in each phase.

focus on a single data structure for each application in Figure 10
(right column). These phase graphs are of three types:

1. No phase behavior past initialization.179.art, 183.equake,
300.twolf show this pattern.

2. Simple phase behavior between a well defined set of phases
with easily-discerned boundaries. Examples of such behavior
are164.gzip, 181.mcf and188.ammp.

3. More complex curves with poorly defined phases and fuzzy
phase boundaries. Our exemplars are175.vpr, 177.mesa and
256.bzip2.

Categories 2 and 3 both contain applications with phase inversions,
where a different data structure contributes the most cachemisses
in each phase. Figure 12 shows the phase behavior of the major
data structures in those of our applications with such inversions –
164.gzip, 175.vpr and181.mcf. Identifying such phase behavior
can be useful in several areas, such as adaptively varying proces-
sor issue width or cache capacity [21, 2]. Combining these prior
implementations with data structure decomposition and thecorrect
sampling period can provide a more rigorous framework for more
sophisticated decisions.

5. Conclusions and future work
In optimizing the performance of the memory hierarchy, architects
and compiler writers have traditionally had very differentviews of
application programs. Architects have usually treated theapplica-
tion as a black box and focussed on regularities in the overall ad-
dress stream, while compiler writers and application programmers
have focussed on identifying fine-grained optimization opportuni-
ties without access to detailed runtime information. In this paper,



we combine the advantages of the two approaches by gathering
runtime information and correlating it with program features - data
structures and program phases - in a semi-automated way.

Our first contribution is a novel methodology for decomposing
the address stream into multiple streams. Our methodology yields
more detailed characterizations of applications that provide a richer
view than the aggregate statistics of conventional methodologies.
Applying it to twelve of the C SPEC2000 benchmarks is successful
at highlighting and quantifying the variability in miss distributions
and access patterns in the SPEC benchmark suite. It is also able
to focus on the specific data structures that show unique behavior,
such as a disproportionate number of memory stall cycles.

A second contribution of this study is a new framework to man-
age and understand application phase behavior at the right gran-
ularity. We show that data structure decomposition and sampling
period selection are both important steps in studying an applica-
tion’s phase behavior, with significant impact on the final picture
of the application that emerges. Understanding how sampling pe-
riod influences phase behavior is complementary to recent work
in detecting phase boundaries using code signatures [21, 11, 10].
One straightforward way to integrate it with online signature-based
phase-detection techniques is by extending them to use variable
sampling periods, determining the sampling period of an applica-
tion offline and providing this information as a hint to hardware.

While this study focusses on C programs, our methodology and
algorithms are applicable to other programming languages as well.
In particular, they need only minor modifications to be applicable
to garbage-collected runtimes – instrumentation in the garbage col-
lector instead of the manual deallocation routine. Our methodology
for selecting the right sampling period is loosely based on spec-
tral analysis, and forms a general and rigorous approach to study
phase behavior and consistently compare global phase behavior
patterns across applications with seemingly different periodicities.
One open problem is to improve this method to more gracefully
identify sampling periods for applications with coarse-grained pe-
riodic behavior, and we believe more advanced ideas from Fourier
analysis will be useful.
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