
Optimizing for Parallelism and Data Locality�Ken Kennedy Kathryn S. McKinleyken@rice.edu kats@rice.eduDepartment of Computer ScienceRice UniversityHouston, TX 77251-1892AbstractPrevious research has used program transformation tointroduce parallelism and to exploit data locality. Un-fortunately, these two objectives have usually been con-sidered independently. This work explores the trade-o�s between e�ectively utilizing parallelism and mem-ory hierarchy on shared-memory multiprocessors. Wepresent a simple, but surprisingly accurate, memorymodel to determine cache line reuse from both mul-tiple accesses to the same memory location and fromconsecutive memory access. The model is used in mem-ory optimizing and loop parallelization algorithms thate�ectively exploit data locality and parallelism in con-cert. We demonstrate the e�cacy of this approach withvery encouraging experimental results.1 IntroductionTransformations to exploit parallelism and to improvedata locality are two of the most valuable compilertechniques in use today. Independently, each of theseoptimizations has been shown to result in dramatic im-provements. This paper seeks to combine the bene�tsof both by using a simple memory model to drive opti-mizations for data locality and parallelism. By unify-ing the treatment of these optimizations, we are able toplace loops with data reuse on inner loops and to intro-duce parallelism for outer loops. Our strategy producesdata locality at the innermost loops, where it is mostlikely to be exploited by the hardware and places paral-lelism at the outermost loop, where it is most e�ective.If these two goals conict, we present an algorithm thatusually reaps the bene�ts of both.Optimizing data locality is necessarily both archi-tecture and language dependent. However, the reuseof memory locations and the consecutive access of ad-jacent memory locations form the foundation of mostmemory hierarchy optimizations. Reuse of a particu-lar memory reference for arrays can be discovered using�Proceedings of the 1992 ACM International Conference onSupercomputing, Washington, D.C, July, 1992.

data-dependence analysis [KKP+81]. However, reuse ofconsecutive accesses, often called unit stride access, isa signi�cant source of reuse that can easily be deter-mined when the storage order of arrays and the cacheline size is known. In this paper we introduce a simplemodel for estimating the cost, in memory references,of executing a given loop nest. The principal advan-tage of this model over previous models is that it takesinto account cache reuse due to consecutive accesses tothe same cache line. We show how this model can beused to exploit data locality at multiple levels via looppermutation.Parallelism is usually most e�ective when it achievesthe highest possible granularity, the amount of workper parallel task. Granularity is highest when paral-lel tasks contain the largest amount of work possible.In this paper, parallelism is introduced via the paral-lel loop construct for shared-memory multiprocessors.Our algorithm �rst uses the memory model to �nd aloop organization that exploits data locality. It thenseeks to parallelize the outermost loop or a parallelloop that can be positioned outermost. Given su�-cient iterations, it then strip mines the loop into twoloops, such that one loop is used to achieve locality andthe other is used to introduce parallelism.1.1 Matrix Multiply ExampleAs an example of this process, consider the ubiquitousmatrix multiply.DO J = 1, NDO K = 1, NDO I = 1, NC(I,J) = C(I,J) + A(I,K) * B(K,J)Assuming arrays are stored such that columns of the ar-rays are in consecutive memory locations, i.e. column-major order, this loop organization exploits data local-ity in the following manner. The consecutive access onthe inner I loop to C(I,J) and A(I,K) provide an oppor-tunity for cache line reuse when the cache line size isgreater than 1. There is also a loop-invariant reuse ofB(K,J) on the I loop. Additionally, the J and the I loopscan be parallel. However, if the number of processors,P, is less than the number of iterations of either loop, itis not pro�table to utilize both levels of parallelism atonce due to additional scheduling overhead. A betterexecution time would result by maximizing the granu-larity of one level of the parallelism and then matchingPage 1



it to the machine. If N = P, selecting J to be executed inparallel preserves data locality and introduces a singlelevel of parallelism with maximum granularity.PARALLEL DO J = 1, NDO K = 1, NDO I = 1, NC(I,J) = C(I,J) + A(I,K) * B(K,J)However, if the number of loop iterations is greaterthan the number of processors, N > P, it is often usefulto combine independent iterations into a single paralleltask to achieve granularity that matches the machine.The parallel loop is strip mined by the number of pro-cessors where the strip size is SS = d N/P e. We call theJ loop the strip and the JJ loop, which walks betweenstrips, the iterator.PARALLEL DO JJ = 1, N, SSDO J = JJ, MIN(JJ + SS - 1, N)DO K = 1, NDO I = I, NC(I,J) = C(I,J) + A(I,K) * B(K,J)The parallel JJ loop carves up the data space nicely,but if each processor's cache is still not large enoughto contain all of array A, tiling the loop nest furtherimproves performance by providing reuse of A. Tilingcombines strip mining and loop interchange to promotereuse across a loop nest [IT88, Wol89a]. For matrixmultiply, the loop nest may be tiled by strip miningthe K loop by TS and then interchanging it with J.PARALLEL DO JJ = 1, N, SSDO KK = 1, N, TSDO J = JJ, MIN(JJ + SS - 1, N)DO K = KK, MIN(KK + B - 1, N)DO I = I, NC(I,J) = C(I,J) + A(I,K) * B(K,J)Here, TS is selected based on the cache size. Thisorganization moves the reuse of A(1:N,KK:KK+TS-1) onthe J loop closer together in time, making it more likelyto still be in cache.This optimization approach may be divided intothree phases:1. optimizing to improve data locality,2. �nding and positioning a parallel loop, and3. performing low-level memory optimizations suchas tiling for cache and placing references in regis-ters [LRW91, CCK90].This paper focuses on the �rst two phases. We ad-vocate the �rst two phases be followed by a low-levelmemory optimizing phase, but do not address it here.The remainder of this paper is divided into 10 sec-tions. We �rst present some terms used in this paper todescribe data dependence and the machine model. Thenext section explores and illustrates the e�ects of par-allelism and memory access on performance. The nexttwo sections present a cost model for determining reuseand an algorithm for improving it. Section 6 describesthe parallelization strategy. The overall strategy com-bines the two in Section 7. In Section 8, experimentalresults are reported. We then overview related workand conclude.

2 Background2.1 Data DependenceDependence analysis is the compile-time analysis of aprogram's memory accesses. A data dependence be-tween two references Ref 1 and Ref 2 indicates that theyread or write a common memory location [KKP+81].True, anti, and output dependences arise when at leastone reference is write; the order between Ref 1 and Ref 2must be preserved to maintain the semantics of theoriginal program. Input dependences arise if both Ref 1and Ref 2 are reads; they do not restrict program order.Data dependences may be characterized by their ac-cess pattern between loop iterations. The number ofloop iterations d separating the source and sink ofthe dependence is its dependence distance [KMC72,Lam74]; it may also be summarized as a dependencedirection consisting of `<', `=', or `>' [WB87, Wol89b].Dependence distances and directions are representedas a vector whose elements, displayed left to right, rep-resent the dependence from the outermost to the inner-most loop in the nest. By de�nition all distance anddirection vectors are lexicographically positive. We use~� = (�1; : : : ; �n) to represent a distance or direction vec-tor, where �i is the dependence distance or direction forthe loop at level i.Dependences may also be characterized as eitherloop-independent or loop-carried. Loop-independentdependences occur on the same iteration of a loop. Adependence between iterations of a loop is called loop-carried and prevents the iterations of a loop from beingexecuted in parallel [AK87]. A dependence is carriedby the outermost loop for which the element in thedirection vector is not an `='.Data dependence is used to determine the legality ofa given loop permutation by checking whether any per-muted true, anti, or output dependence vector becomeslexicographically negative [Ban90b, WL90]. Data de-pendence also characterizes reuse of individual memorylocations [CCK90].2.2 Memory and Language ModelThe techniques developed in this paper are intendedfor shared-memory multiprocessors where each proces-sor has at a local cache and the processors are con-nected with a common bus. Because we are evaluatingreuse, we require some knowledge of the memory hier-archy. However, because our model is very simple, onlyminimal knowledge of the cache is required; the com-piler must know the cache line size (cls). The size, setassociativity, and replacement policy of the cache arenot important here. In addition, we assume a write-back cache and ignore non-unique write references. Ifthe cache is write-through, these writes should be in-cluded.In addition, we only concern ourselves with memoryPage 2



total work

s p
 e

 e
 d

 - 
u 

p

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
best (J out,N=18,M=2:18)

mem (I out,M=18,N=2:18)

gran (J out,N=2:18,M=18)

worst (I out,M=2:18,N=18)Figure 1: Memory and parallelism tradeo�saccesses caused by array references, since they domi-nate memory access in scienti�c Fortran codes. We alsoassume that arrays are stored in column-major order,where unit stride accesses in the �rst array dimensiontranslate into contiguous memory accesses. Our resultsare also valid for row-major arrays such as those foundin C with only minor changes.3 Tradeo�s in OptimizationThis section illustrates with an experiment the inu-ence of memory reuse and parallelism granularity onspeed-up. As expected, it indicates the best perfor-mance is possible only when both are utilized e�ec-tively in concert. It also shows that when both cannotbe achieved at once, there are situations where favor-ing one or the other results in the best execution time.Neither always dominates. To illustrate, we phrase thefollowing question.Given enough computation to make parallelism prof-itable, what is the e�ect of reuse and how should ita�ect the optimization strategy?Figure 1 presents the results of executing di�erent par-allel versions of the following loop nest on 18 processorsof a Sequent Symmetry S81 with 20 processors, withincreasing amounts of total work.DO J = 1, NDO I = 1, MDO H = 1, LC(I, J) = C(I, J) + A(I, J) + B(I, J)The total amount of work is increased by varying theupper bounds N and M from 2 to the number of pro-cessors (P = 18). We consider positioning I or J as the

outer parallel loop in the nest. In Figure 1, the bestversion of this loop nest has an outer parallel J loopwith 18 iterations (N = 18) and total work is increasedby varying M from 2 to 18. Each of the 18 processorsaccesses distinct columns of each array. This organi-zation exploits cache line reuse on each processor andresults in linearly-scalable speed-up.When the J loop is outermost and the number of par-allel iterations of is varied from 2 to 18 along with Pand the I loop contains 18 iterations, the total amountof work increases, but the work per processor remainsthe same. This organization is illustrated by the granline. In this case, the speed-up scales by the numberof parallel iterations, but cache line reuse is still facili-tated on each processor.If instead the I loop is made outermost and parallel,then processors must compete for the cache line whichcontains C(I,J) in order to write it. This competitionis called false sharing. In addition, multiple processorsrequire cache lines containing A(I,J) and B(I,J), increas-ing network contention and total memory utilization.When the number of parallel iterations of the I loop asoutermost varies from 2 to 18 along with P and the Jloop contains 18 iterations, the worst line indicates theperformance. If the number of parallel iterations of I isheld at 18 while the J loop is varied from 2 to 18, themem line results.Compare the pair of lines best and mem. The factorof two di�erence is due to the bene�t of cache linereuse in best, and the limitations of false sharing andincreased bus and memory utilization in mem. Thesame comparison holds for the gran and worst lines.These results indicate that the parallelizing algorithmmust recognize reuse and false sharing to be e�ective.Now compare the pair of crossing lines gran andmem. These computations di�er only by an inter-change. An optimization strategy that only used loopinterchange would be forced to pick between the two.To obtain the best performance for this example, theJ loop would be outermost when N > 8, otherwise the Iloop should be outermost. In addition, this \crossover"point would need to be determined for each computa-tion, a daunting task. Our approach instead combinesloop interchange and strip mining in a parallelizationstrategy that minimizes false sharing and exploits datareuse.4 Optimizing Data LocalityIn this section we describe two sources of data reuse,then we incorporate both in a simple yet realistic costmodel. In subsequent sections, this cost model is usedto guide optimizations for improving data locality andexploiting parallelism.4.1 Sources of Data ReuseWe �rst consider the two major sources of data reuse.Page 3



� multiple accesses to the same memory location� accesses to consecutive memory locations (i.e.stride 1 or unit stride access)Multiple accesses to the same memory location mayarise from either a single array reference or multiplearray references. These accesses are loop-independentif they occur in the same loop iteration, and are loop-carried if they occur on di�erent loop iterations. Thistype of reuse is called temporal reuse. The most ob-vious source of temporal reuse is from loop-invariantreferences. For instance, consider the reference to A(J)in the following loop nest. It is invariant with respectto the I loop, and is reused by each iteration.DO J = 1,NDO I = 1,NS = S + A(J) + B(I) + C(J,I)A second source of data reuse is caused by multi-ple accesses to consecutive memory locations. For in-stance, each cache line is reused multiple times on theinner I loop for B(I) in the above example. This reuseis called spatial reuse. The actual amount of reuse isdependent on the size of B(I) relative to the cache linesize and the pattern of intervening references. For therest of this paper, we assume for simplicity that thecache line size is expressed as a multiple of the numberof array elements. For reasonably large computations,references such as C(J,I) do not provide any reuse onthe I loop, because the desired cache lines have beenushed by intervening memory accesses.Previous researchers have studied techniques for im-proving locality of accesses for registers, cache, andpages [AS79, CCK90, WL91, GJG88]. In this paperwe concentrate on improving the locality of accessesfor cache; i.e. we attempt to increases the locality ofaccess to the same cache line. Empirical results showthat improving spatial reuse can be signi�cantly moree�ective than techniques that consider temporal reusealone [KMT92]. In addition, consecutive memory ac-cess results in reuse at all levels of the memory hierar-chy except for registers.4.2 Simplifying AssumptionsTo simplify analysis we make two assumptions. First,our loop cost function assumes that reuse occurs onlyacross iterations of the innermost loop. This assump-tion decreases precision but greatly simpli�es analysis,since it allows the number of cache line accesses to becalculated independent of the permutation of all outerloops. This assumption is accurate if the inner loopcontains a su�ciently large number of memory accessesto completely ush the cache after executing all of itsiterations. We show later that our optimizations toimprove locality can select a desirable permutation ofouter loops even with this restriction.

Figure 2: Algorithm RefGroupInput:Refs = fRef 1 : : :Ref ng referencesDG = fhRef i ~� Ref ji; : : :g the dependence graphl = candidate innermost loopOutput:fRefGroup1 : : :RefGroupmg reference groups for lAlgorithm:m = 0while Refs 6= ; dom = m+ 1RefGroupm = frg, where r 2 RefsRefs = Refs � frgfor each hr ~� r0i or hr0 ~� ri 2 DG s.t. r0 2 Refsif (�l is a constant d) & (�l is the onlynonzero entry in ~� )RefGroupm = RefGroupm + fr0gRefs = Refs � fr0gendifendforendwhileCache interference refers to the situation where twomemory locations are mapped to the same cache line,eliminating an opportunity to exploit reuse for one ofthe references. Our second assumption is that cacheinterferences occur rarely for small numbers of innerloop iterations, compared to the total number of dis-tinct cache lines accessed in those iterations. In otherwords, we expect very few interferences for each cacheline being reused, since the cache line is only neededfor a small number of consecutive inner loop iterations.Lam et al. show that this assumption may not hold ifcache lines must remain live for longer periods of time.Considerable interference may take place when loopsare tiled to increase reuse across outer loops [LRW91].4.3 Loop Cost FunctionGiven these assumptions, we present a loop cost func-tion LoopCost based on our memory model. Its goalis to estimate the total number of cache lines accessedwhen a candidate loop l is positioned as the innermostloop. The result is used to guide loop permutation toimprove data locality. The estimate is computed intwo steps. First, references that will access the samecache line in the same or di�erent iterations of the lloop are combined using RefGroup. Second, the num-ber of cache lines accessed by all groups is calculatedusing LoopCost.4.4 RefGroupThe goal of the RefGroup algorithm is to partitionvariable references in the program text into referencegroups such that all references in a group access thesame memory locations, and consequently the samePage 4



cache line. Wolf and Lam call these groups equivalenceclasses exhibiting group-temporal reuse. The partitionprocess is particularly simple here because we only con-sider reuse for each loop when it is positioned inner-most.Two references are in the same reference group forloop l if they actually access some common memorylocation (data dependence ~� exists between them), andthe reuse occurs on l if it is positioned as the innermostloop. The common accesses then occur on either thesame iteration of l (�l = 0) or across d iterations of l(�l = d). More formally we de�ne RefGroup as follows.De�nition: Two references Ref 1 and Ref 2 belongto the same reference group with respect to loop l ifand only if:1. 9 Ref 1~�Ref 2 , and2. ~� is a loop-independent dependence, or�l, the entry in ~� corresponding to loop l, is aconstant d (d may be zero) and all other entriesare zero.4.4.1 Jacobi ExampleFor instance, consider the following Jacobi iteration ex-ample.DO I = 2,N-1DO J = 2,N-1A(J,I) = 0.2* (B(J,I) + B(J-1,I) + B(J,I-1)+ B(J+1,I) + B(J,I+1))Data dependences connect all references to B. The ref-erence groups for the I loop are:fA(J,I)g, fB(J,I),B(J,I-1),B(J,I+1)g,fB(J-1,I)g, fB(J+1,I)g.The reference groups for the J loop are:fA(J,I)g, fB(J,I),B(J-1,I),B(J+1,I)g,fB(J,I-1)g, fB(J,I+1)g.Algorithm RefGroup is shown in Figure 2. Its e�-ciency may be improved by pruning all identical arrayreferences, since they access the same memory locationon each iteration and always fall in the same referencegroup.4.5 LoopCostAfter the number of reference groups for loop l is com-puted with RefGroup, the algorithmRefCost is appliedto estimate the total number of cache lines that wouldbe accessed by each reference group if l were the inner-most loop. Once again, the task is simpli�ed becausewe only consider reuse between iterations of l.RefCost works by considering one array reference Reffrom each reference group; these representative refer-ences are classi�ed as loop-invariant, consecutive, ornon-consecutive with respect to loop l. Loop-invariantarray references have subscripts that do not vary with

l; they require only one cache line for all iterationsof l.1 Consecutive array accesses vary with l onlyin the �rst subscript dimension. They access a newcache line every cls iterations, resulting in trip=clscache line accesses, assuming l performs trip iterations.Fewer cache lines are reused for nonunit strides. Non-consecutive array accesses vary with l in some othersubscript dimension; they access a di�erent cache lineeach iteration, yielding a total of trip cache line ac-cesses.Once RefCost is computed, the algorithm LoopCostcalculates the total number of cache lines accessed byall references when l is the innermost loop. It sim-ply sums RefCost for all reference groups, then multi-plies the result by the trip counts of all the remainingloops. This calculation will underestimate the numberof cache lines accessed on the inner loop, if the dis-tance of the dependences for a particular RefGroup setare greater than cls. Also, slight underestimates occursbecause the exact alignment of arrays in memory is notknown until run-time. LoopCost will overestimate thenumber of cache lines, if there is additional reuse acrossan outer loop.LoopCost is expressed more formally in Figure 3 forthe following loop nest containing one array referencefrom each reference group RefGroup1 : : :RefGroupm:do i1 = lb1; ub1; s1do i2 = lb2; ub2; s2� � �do in = lbn; ubn; snRef 1(f1(i1; : : : ; in); : : : ; fj(i1; : : : ; in))� � �Refm(g1(i1; : : : ; in); : : : ; gk(i1; : : : ; in))Note that LoopCost can be used to calculate cache lineaccesses even for array references with complex sub-script expressions. For instance, it determines thatA(I+J+N) results in consecutive memory accesses withrespect to both the I and J loops.4.6 Imperfectly Nested LoopsBecause of their simplicity, both RefGroup and Loop-Cost can also be applied to imperfectly nested loops.Consider the following example, where the �rst de�ni-tion of A(J) is imperfectly nested:DO J = 1, 100A(J) = 0DO I = 1, 100A(J) = A(J) + : : :RefGroup would place all references to A(J) in the samereference group. When we apply RefCost to calculatethe number of cache lines accessed by a reference group,we need to select the most deeply nested member of1Of course, loop-invariant references should eventually be putin registers by later optimizations [CCK90]. Page 5



Figure 3: Algorithm LoopCostInput: L = fl1; : : : ; lng a loop nest with headers lb; ub; sR = fRef 1; : : : ;Refmg representatives from each reference grouptripl = (ubl � lbl + sl)=slcls = the cache line size,appear(f) = the set of index variables that appears in the subscript expression fcoe�(il ; f) = the coe�cient of the index variable il in the subscript f (it may be zero)Output: LoopCost(l) = number of cache lines accessed with l as innermost loopAlgorithm:LoopCost(l) = mXk=1 0@RefCost(Ref k(f1(i1; : : : ; in); : : : ; fj(i1; : : : ; in))) � Yh 6=l triph1ARefCost(Ref k) =1 if (il 62 appear(f1)) ^ : : :^ (il 62 appear(fj)) loop invarianttripl=cls if (il 2 appear(f1)) ^ (jcoe� (il; f1)j = 1) ^ (jslj = 1) ^ unit stride(il 62 appear(f2)) ^ : : :^ (il 62 appear(fj))tripl otherwise no reusethe group. LoopCost then multiplies the result by thetrip counts of all the loops that actually enclose thereference.5 Loop PermutationThe previous section presents our cost model for eval-uating the data locality of a given loop structure withrespect to cache. In this section we show how the sim-plicity and accuracy of the cost model guides loop per-mutation to restructure a loop nest for better data lo-cality.A naive optimization algorithm would simply gen-erate all legal loop permutations and select the per-mutation that yields the best estimated data localityusing LoopCost. Unfortunately, generating all possibleloop permutations takes time that is exponential in thenumber of loops and can be very expensive in practice.It becomes increasingly unappealing when transforma-tions such as strip mining introduce even larger searchspaces.Instead of testing all possible permutations, we showhow our cost model allows us to design an algorithmto directly compute a preferred loop permutation.5.1 Memory OrderThe locality evaluating function LoopCost does not cal-culate data reuse on outer loops; however, we can stillrestructure programs to exploit outer loop reuse. Thekey insight is that if loop l causes more reuse than loopl0 when both are considered as innermost loops, l willalso promote more reuse than l0 when both loops areplaced at the same outer loop position.LoopCost can thus be considered to be a measureof the reuse carried by a loop. This allows us to se-

lect a desired permutation of loops called memory or-der that yields the best estimated data locality. Wesimply rank each loop l using LoopCost, ordering theloops from outermost to innermost (l1 : : : ln) such thatLoopCost(li�1) � LoopCost(li).5.1.1 Memory Order AlgorithmThe algorithm MemoryOrder is de�ned as follows. Itcomputes LoopCost for each loop, sorts the loops inorder of decreasing cache line accesses (i.e. increasingreuse), and returns this loop permutation.5.1.2 ExampleAs an example, recall matrix multiply. We computememory order with cls = 4. The reference groups formatrix multiply put the two references to C(I,J) in thesame group on all the loops and A(I,K) and B(K,J) areplaced in separate groups. LoopCost computes the rel-ative reuse on each of the loops as seen below.LoopCost as innermostreferences J K IC(I; J) n � n2 1 � n2 1=4n � n2A(I;K) 1 � n2 n � n2 1=4n � n2B(K; J) n � n2 1=4n � n2 1 � n2totals 2n3 + n2 5=4n3 + n2 1=2n3 + n2The algorithm MemoryOrder uses these costs to com-pute a preferred loop ordering of (J, K, I), from out-ermost to innermost. The same result is obtained byprevious researchers [AK84, WL91].5.2 Permuting to Achieve Memory OrderWe must now decide whether the desired memory or-der is legal. If it is not, we must select some legalloop permutation close to memory order. To determinePage 6



whether a loop permutation is legal is straightforward.We permute the entries in the distance or directionvector for every true, anti, and output dependence toreect the desired loop permutation. The loop permu-tation is illegal if and only if the �rst nonzero entryof some vector is negative, indicating that the exe-cution order of a data dependence has been reversed[AK84, Ban90a, Ban90b, WL90].In many cases, the loop permutation calculated byMemoryOrder is legal and we are �nished. However, ifthe desired memory order is prevented by data depen-dences, we use a simple heuristic for calculating a legalloop permutation near memory order. The algorithmfor determining this organization takes max(D;n2)time in the worst-case where n is the depth of thenest and D is the number of dependences, a de�niteimprovement over considering all legal permutations,which is exponential in n. The algorithm is guaran-teed to �nd a legal permutation with the desired innerloop, if one exists.5.2.1 Permutation AlgorithmGiven a memory ordering fi�1 ; i�2 ; : : : ; i�ng of theloops fi1; i2; :::; ing where i�1 has the least reuse andi�n has the most, we can test if it is a legal permutationdirectly by performing the equivalent permutation onthe elements of the direction vectors. If the result is alegal set of direction vectors, the loops are permutedaccordingly.Otherwise, we attempt to achieve a \nearby" per-mutation with the algorithmNearbyPermutation. Thealgorithm builds up a legal permutation in P by �rsttesting to see if the loop i�1 is legal in the outermostposition. If it is legal, it is added to P and removedfrom L. If it is not legal, the next loop in L is tested.Once a loop l is positioned, the process is repeatedstarting from the beginning of L�flg until L is empty.The following theorem holds for the NearbyPermuta-tion algorithm.Theorem: If there exists a legal permutation where�n is the innermost loop, then NearbyPermutation will�nd a permutation where �n is innermost.The proof by contradiction of the theorem proceedsas follows. Given an original set of legal direction vec-tors, each step of the \for" is guaranteed to �nd a loopwhich results in a legal direction vector, otherwise theoriginal was not legal [AK84, Ban90a]. In addition, ifany loop �1 through �n�1 may be legally positionedprior to �n it will be.This characteristic is important because most datareuse occurs on the innermost loop and is due to spatialreuse, so positioning the inner loop correctly will yieldthe best data locality.

Figure 4: Algorithm NearbyPermutationInput:O = fi1; i2; :::; ing, the original loop orderingDV = set of original legal direction vectors for lnL = fi�1 ; i�2 ; : : : ; i�ng , a permutation of OOutput:P a nearby permutation of OAlgorithm:P = ; ; k = 0 ; m = nwhile L 6= ;for j = 1;ml = lj 2 Lif direction vectors for fp1; : : : ; pk; lg are legalP = fp1; : : : ; pk; lgL = L � flg ; k = k + 1 ; m = m� 1break forendifendforendwhile6 ParallelismIn the following two subsections, parallelism is eval-uated and exploited. We �rst present a performanceestimator that evaluates the potential bene�t of paral-lelism. A parallel code generation strategy then usesperformance estimation and the cost model developedin the previous section with other transformations tocombine e�ective parallelism and memory order, mak-ing tradeo�s as necessary.6.1 Performance EstimationThis section uses performance estimation to quantifythe e�ects of parallelism on execution time. Our per-formance estimator predicts the cost of parallel and se-quential performance using a loop model and a trainingset approach.The goal of our performance estimator is to assist incode generation for both shared and distributed mem-ory multiprocessors [BFKK92, KMM91]. Modeling thetarget machines at an architectural level would requirecalculating an analytical model for each supportedarchitecture. Instead our performance estimator usesa training set to characterize each architecture in amachine-independent fashion. A training set is a groupof kernel computations that are compiled, executed andtimed on each target machine. They measure the costof operations such as multiplication, branching, intrin-sics, and loop overhead. These costs are then madeavailable to the performance estimator via a table ofdata. Note, the training sets for the performance es-timator only measure access times to data in registersor the closest cache.Of particular interest is the estimation of parallelloops. Given su�cient parallel granularity, using allavailable processors results in the best execution time.Page 7



0 50 100 150 200 250 300 350 400 450 500

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19

120

140

160

400

500

600

1000

2000

3000

Interpolated contours in microseconds

total work

p 
r o

 c 
e 

s s
 o

 r 
s

Figure 5: Parallel loop training setEstimating the cost in this circumstance may be mod-eled by determining the following.cs = cost of starting parallel executioncf = cost of forking and synchronizinga parallel processP = number of processorsb = number of iterations of the parallel loopt(B) = cost of the loop bodyIf the loop bounds are unknown, a guess is used that isbased on the declared dimension of the arrays accessedin the loop. With these parameters the performance ofa parallel loop with su�cient work may be estimatedby: cs + cfP + � bP � t(B) :However, if the amount of work is not su�cient, parallelloop execution is more di�cult to model. Instead of anequation, a table is used to indicate the appropriatenumber of processors for the best performance. Themodel and the table are generated using a training set.The sample training set for determining parallel loopoverhead begins by varying the total amount of work.For each unit of work, the number of processors is var-ied from 1 to the total available. The number of pro-cessors which minimize the execution time of this workis selected. The result of a training run for parallelloops on the Sequent S81 appears in Figure 5.This particular training run repeatedly performed asingle scalar operation that executed for approximately10 microseconds, which represents one unit of work inFigure 5. Each of the contour lines indicates a partic-ular execution time. The single line cutting across the

contour lines represents the minimum execution timefor executing a particular work load and the appropri-ate number of processors. When total work is below250 a table determines the appropriate number of pro-cessors and approximate execution time. Once the to-tal work is over about 250, the parallel loop model isused. The estimator provides a single cost function forevaluating loops that chooses between the techniquesbased on total work and number of loop iterations.Estimate(l; how) returns h�; npi wherel is a loop with body Bhow indicates whether l may be run in parallelThis function returns a tuple h�; npi with an estimate �which is the minimal execution time and the number ofprocessors np necessary to obtain the estimate, basedon whether the loop is parallel. Note, if the loop issequential or it is not pro�table to run it in parallel,the sequential running time and np = 1 are returned.6.2 Introducing ParallelismThe key to introducing parallelism is to maintainmem-ory order during parallelization by using strip miningand loop shifting (loop shifting moves an inner loop out-ward across one or more loops). Strip mining performstwo functions in parallelization. (1) It preserves cacheline reuse in parallel execution. Without strip mining,consecutive iterations may be scheduled on di�erentprocessors, denying cache line reuse. (2) Because stripmining results in two loops, the parallel iterator loopmay be shifted outward to maximize granularity whilethe sequential strip remains in place providing the datalocality introduced using memory order. To illustratethis point, consider the subroutine dmxpy from Lin-packd written in memory order [DBMS79].DO J = JMIN, N2DO I = 1, N1Y(I) = Y(I) + X(J) * M(I,J)The J loop is not parallel. The I loop can be parallel.Both contain reuse. A simple parallelization that max-imizes granularity would interchange the two loops andmake the I loop parallel without strip mining. Unfortu-nately with this organization, the parallel loop may bescheduled such that consecutive iterations are assignedto di�erent processors causing false sharing of Y andeliminating cache line reuse for consecutive accesses toX and M. In addition, cache lines containing the samearray elements would be required at multiple proces-sors, increasing total memory and bus utilization.We instead strip mine a parallel loop by strip sizeSS =dN1/Pe to provide reuse on the strip and parallelizethe resultant iterator. If the parallel loop is outermost,as in matrix multiply, parallelization is complete. Ifnot, we use loop shifting to move the parallel iteratorto its outermost legal position, maximizing its granu-larity. Applying this strategy to dmxpy, we begin withPage 8



the memory ordered loop nest. The I loop is the onlyparallel loop and it contains reuse. Therefore, it is stripmined. The parallel iterator is not outermost, but it islegally shifted to the outermost position. The compilershifts the loop, resulting in maximum granularity anddata locality as illustrated below.PARALLEL DO I = 1, N1, SSDO J = JMIN, N2DO II = I, MIN(I + SS - 1, N1)Y(II) = Y(II) + X(J) * M(II,J)6.3 Strip Mining AlgorithmIf a loop is selected to be performed in parallel, it isstrip mined if it contains any reuse. Given su�cientiterations, strip mining exploits data locality and par-allelism by using dN/Pe as the strip size where N is thenumber of iterations. Assuming cls � P, the iterationspace is su�ciently large if P < N. IfP < N < cls �P;strip mining by d N/Pe is less than the cls and mayresult in false sharing. However, the granularity of theparallel loop does match P and some reuse will occur.In this case, we still strip mine by dN/Pe. However, ifN < P, strip mining may provide reuse but at the costof drastically reducing the granularity of parallelism.This tradeo� is very machine speci�c. We choose notto strip mine when N < P.When memory order is computed, the loops aremarked to indicate if they contain any reuse. If there isreuse, the strip mining algorithm uses the above equa-tions to select a strip size that maximizes granularityand reuse. If there is no reuse, the strip mining al-gorithm does not perform strip mining, giving moreexibility to the scheduler.6.4 Parallelization AlgorithmFor memory ordered loop nests that are not parallelon the outermost loop, the Parallelization algorithmuses loop shifting to introduce parallelism. It uses loopshifting, rather than a general loop permutation algo-rithm, in order to minimize the e�ect of parallelizationon data locality. It performs strip mining when theloop contains reuse before shifting for the same reason.The algorithm for introducing parallelism into mem-ory order appears in Figure 6. It begins by testingwhether the outermost loop is parallel. In the �rst it-eration of the \for k" (j = k = 1), the �rst \if" tests ifthe outermost loop is parallel. Trivially, a shift of loop�j to position j is always legal.If the loop is parallel, it is strip mined and paral-lelized and the algorithm returns. If the loop is notparallel, a legal shift of an inner loop to position jwhich is parallel at position j is sought. If a parallelloop is found that can be shifted outermost to j, it isstrip mined, parallelized and shifted and the algorithmreturns. Otherwise, a shift to position j may cause the

Figure 6: Algorithm ParallelizeInput: L = f�1; : : : ; �ng a legal permutationOutput: T a parallelizing transformationAlgorithm:T = ;for j = 1; nfor k = j; nif �k legal at position j & parallelT = f StripMine(�k),shift iterator to j, parallelize it greturn Telseif �k legal at j & �j becomes parallelT = fStripMine(�k), shift k iterator to j,StripMine(new �j+1),parallelize the j+1 iterator gendifendforif T 6= ; return Tendfornext inner loop, i.e. the loop originally positioned at j,to be parallel. This situation is determined in the \el-seif." Because it is more desirable to parallelize a loopat position j than at j + 1, all other shifts to positionj are considered before this parallelization is returnedat the completion of the \for k."In Figure 6 the Parallelize algorithm does not detectwhen strip mining results in a strip size of less than clsor strip mining is not performed due to insu�cient par-allel iterations. As we saw in Section 3 these conditionsare unavoidable in some cases and the best possibleperformance is gained even when they hold. However,we extend Parallelize as follows to seek a better paral-lelization for which neither condition holds.If StripMine returns with a strip size of less thancls or does not strip mine due to insu�cient paralleliterations, then the number of parallel iterations PIand the size of the strip SS are recorded and the \fork" loop continues instead of returning. If the \for k"�nds a parallelization where neither condition holds, itreturns. Otherwise, at the completion of the \for k" itselects the parallelization with the largest pair (PI, SS).7 Optimization AlgorithmThe optimization driver for exploiting data reuse andintroducing parallelism appears in Figure 7. It com-bines the component algorithms described in the pre-vious sections and is also O(n2) time.It �rst calls MemoryOrder to optimize data localityvia loop permutation. It then determines whether theloop contains su�cient computation to pursue paral-lelism. If it does, the memory ordered loop nest isprovided to the algorithm Parallelize. If needed, Par-allelize uses strip mining and loop shifting to introduceloop level parallelism. Page 9



Figure 7: Algorithm OptimizerInput: L = fl1; : : : ; lngOutput: T an optimization of LAlgorithm:O = MemoryOrder(L)np = Estimate (O, parallel)if np > 1 (parallelism is pro�table)T = Parallelize(O)endifperform f O; T gThe search space in Parallelize is constrained to meetour goal of perturbing the memory order as little aspossible. If parallelism is not discovered and would bepro�table, other optimization strategies that considerall loop permutations, loop skewing [WL90], or loopdistribution [McK92] should be explored.8 Experimental resultsWe tested the algorithm for optimizing data locality in-dependently and report some of those results here. Theoverall parallelization strategy was also tested by ap-plying it by hand to several kernels and to the programErlebacher, provided by Thomas Eidson from ICASE.The results of these experiments are very promising.8.1 Matrix multiplyWe executed all possible loop permutations of matrixmultiply for 3 problem sizes, 150� 150, 300� 300 and512�512, on a variety of uniprocessors to determine theaccuracy of the MemoryOrder in predicting the bestloop permutations. In Table 1, the permutations areordered from the most desirable to the least based onthe ranking computed by MemoryOrder. On most ofthe processors, memory order JKI produced the best re-sults. On all the processors but the Sequent, the entireranking generally served to accurately predict relativeperformance. These results illustrate that LoopCost ise�ective in predicting relative reuse on outer loops asTable 1: Matrix Multiply (in seconds)Loop PermutationProcessor JKI KJI JIK IJK KIJ IKJ150� 150Sequent Weitek 26.0 27.1 31.1 30.7 28.4 26.9Sun Sparc2 2.33 2.25 3.20 3.16 2.81 2.79Intel i860 1.16 1.17 1.23 1.18 3.50 3.42IBM RS6000 0.42 0.46 0.36 0.38 1.08 1.08300� 300Sun Sparc2 18.3 17.8 26.1 25.2 24.9 27.1Intel i860 9.7 10.2 21.7 21.8 59.1 58.9IBM RS6000 3.37 3.47 12.5 12.5 56.4 56.5512� 512Sun Sparc2 91.0 93.6 223 240 277 336Intel i860 60.2 46.7 143 156 292 292IBM RS6000 16.7 17.0 183 186 399 399

well as inner loops.Interestingly, the disparity in execution times be-tween permutations became greater as the processorspeed increased. On the individual processors, execu-tion times varied by signi�cant factors of up to 3.69on the Sparc2, 6.25 on the i860, and a dramatic 23.89on the RS6000. These results indicate that data lo-cality should be the overwhelming force driving scalarcompilers today.Table 2: Speed-ups for Parallel Matrix Multiplyspeed-up of parallel JKI tiledover oversequential JKI sequential JKI tiled19 processors150x150 20.5 18.8300x300 20.1 18.77 processors150x150 7.5 6.8300x300 7.5 7.0The speed-ups of a parallel tiled matrix multiply on 7and 19 processors of a Sequent Symmetry S81 for ar-rays of size 150 � 150 and 300 � 300 are presented inTable 2. We ran a sequential version with the loopsin memory order JKI, a sequential tiled version, andthe identically tiled parallel version. The parallel ver-sion is tiled by 4 and is the same version presented inSection 1.1. Besides tiling, no other low-level memoryoptimizations were used. The speed-ups were basicallylinear for both matrix sizes when comparing the twotiled versions.8.2 DmxpyThe subroutine dmxpy from Linpack was optimized us-ing these algorithms as illustrated in Section 6.2. Inscienti�c programs, there are many instances of thistype of doubly-nested loop which iterates over vectorsand/or matrices, where only one loop is parallel andit is best ordered at the innermost position. Theseloops may be an artifact of a vectorizable programmingstyle. They appear frequently in the Perfect bench-marks [CKPK90], the Level 2 BLAS [DCHH88], andthe Livermore loops [McM86].Table 3 illustrates the performance bene�ts with theorganization of dmxpy generated by our algorithm onmatrices of size 200�200 on 19 processors. For compar-ison, the performance when the I strip is not returnedto its best memory position and a parallel inner I loopwere also measured.Table 3: Dmxpy on 19 processorsloop organizationI loop parallelI J II I II J J Ispeed-up over sequential JI 16.4 13.8 2.9Page 10



8.3 ErlebacherErlebacher is a tri-diagonal solver for the calculationof variable derivatives written by Thomas Eidson atICASE, NASA-Langley. It uses 3 dimensional 64 �64� 64 arrays. It contains 1341 lines of Fortran. TheOptimizer algorithm was performed by hand on theentire program. No low-level memory optimizationswere performed. The speed-up from this algorithm on19 processors was 14.2 for the entire application. Thespeed-up for the parallel portions of the program was15.0.9 Related workOur work bears the most similarity to research by Wolfand Lam [WL91]. They develop an algorithm thatestimates all temporal and spatial reuse for a givenloop permutation, including reuse on outer loops. Thisreuse is represented as a localized vector space. Vectorspaces representing reuse for individual and multiplereferences are combined to discover all loops L carry-ing some reuse. They then exhaustively evaluate alllegal loop permutations where some subset of L is inthe innermost position, and select the one with the bestestimated locality.Wolf and Lam's algorithm for selecting a loop per-mutation is potentially more precise and powerful thanthe one presented in this paper. It directly calculatesreuse across outer loops and can suggest loop skewingand reversal to achieve reuse; however, how often thesetransformations are needed is yet to be determined.Skewing in particular is undesirable because it reducesspatial reuse.Gannon et al. also formulate the dependence test-ing problem to give reuse and volumetric informationabout array references [GJG88]. This information isthen used to tile and interchange the loop nests forcache, after which parallelism is inserted at the out-ermost possible position. They do not consider howthe parallelism a�ects the volumetric information norif interchange would improve the granularity of paral-lelism.Porter�eld presents a formula that approximates thenumber of cache lines accessed, but is restricted to acache line size of one and loops with uniform depen-dences [Por89]. Ferrante et al. present a more generalformula that approximates the number of cache linesand is applicable across a wider range of loops [FST91].However, they �rst compute an estimate for every ar-ray reference in a loop nest and then combine them,trying not to do dependence testing. Like Wolf andLam, they exhaustively search for a loop permutationwith the lowest estimated cost.Many algorithms have been proposed in the litera-ture for introducing parallelism into programs. Calla-han et al. use the metric of minimizing barrier syn-

chronization points via loop distribution, fusion and in-terchange for introducing parallelism [ACK87, Cal87].Wolf and Lam [WL90] introduce all possible parallelismvia the unimodular transformations: loop interchange,skewing, and reversal. Neither of these techniques tryto map the parallelism to a machine, or try take intoaccount data locality, nor is any loop bound informa-tion considered. Banerjee also considers introducingparallelism via unimodular transformations, but onlyfor doubly nested loops [Ban90b]. Banerjee does how-ever consider loop bound information.Because we accept some imprecision, our algorithmsare simpler and may be applied to computations thathave not been fully characterized in Wolf and Lam'sunimodular framework. For instance, we can supportimperfectly nested loops, multiple loop nests, and im-precise data dependences. We believe that this ap-proximation is a very reasonable one, especially in viewof the fact that we intend to use a scalar cache tilingmethod as a �nal step in the code generation process[CCK90]. In addition, the algorithms presented hereare O(n2) time in the worst case, where n is the depthof the loop nest, and are a considerable improvementover work which compares all legal permutations andthen picks the best, taking exponential time.10 Summary and ConclusionsWe have addressed the problem of choosing the bestloop ordering in a nest of loops for exploiting data local-ity and for generating parallel code for shared-memorymultiprocessors. As our experimental results bear out,the key issue in loop order selection is achieving ef-fective use of the memory hierarchy, especially cachelines. Our approach improves data locality, providesthe highest granularity of parallelism, and properly po-sitions loops for low-level memory optimizing transfor-mations. When possible, the bene�ts of parallelismand data locality are therefore both exploited.We believe our experimental results provide strongevidence for the e�ectiveness of this approach. Withthis method, the programmer is permitted to pay moreattention to the correctness of a calculation and lessto the explicit loop structure required to achieve highperformance.AcknowledgmentsWe are especially grateful to Chau-Wen Tseng for hissigni�cant contributions to this work. We would like tothank Preston Briggs, Cli� Click, Ervan Darnell, andNathaniel McIntosh for their many helpful discussionsand experiments. We also appreciate the constructivedetailed suggestions from one of our reviewers.This research was supported by the CRPC, the Cen-ter for Research on Parallel Computation, a NationalScience Foundation Science and Technology Center,Page 11



and by a DARPA/NASA Research Assistantship inParallel Processing, administered by the Institute forAdvanced Computer Studies, University of Mary-land. Use of the Sequent Symmetry S81 was pro-vided by the CRPC under NSF Cooperative Agreement# CDA8619893.References[ACK87] J. R. Allen, D. Callahan, and K. Kennedy. Auto-matic decomposition of scienti�c programs for paral-lel execution. In Proceedings of the Fourteenth An-nual ACM Symposium on the Principles of Program-ming Languages, Munich, Germany, January 1987.[AK84] J. R. Allen and K. Kennedy. Automatic loop inter-change. In Proceedings of the SIGPLAN '84 Sympo-sium on Compiler Construction, Montreal, Canada,June 1984.[AK87] J. R. Allen and K. Kennedy. Automatic translationof Fortran programs to vector form. ACM Trans-actions on Programming Languages and Systems,9(4):491{542, October 1987.[AS79] W. Abu-Sufah. Improving the Performance of Vir-tual Memory Computers. PhD thesis, Dept. ofComputer Science, University of Illinois at Urbana-Champaign, 1979.[Ban90a] U. Banerjee. A theory of loop permutations. InD. Gelernter, A. Nicolau, and D. Padua, editors,Languages and Compilers for Parallel Computing.The MIT Press, 1990.[Ban90b] U. Banerjee. Unimodular transformations of doubleloops. In Advances in Languages and Compilers forParallel Computing, Irvine, CA, August 1990. TheMIT Press.[BFKK92] V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-mer. A static performance estimator in the FortranD programming system. In J. Saltz and P. Mehrotra,editors, Languages, Compilers, and Run-Time Envi-ronments for Distributed Memory Machines. North-Holland, Amsterdam, The Netherlands, 1992.[Cal87] D. Callahan. A Global Approach to Detection of Par-allelism. PhD thesis, Rice University, March 1987.[CCK90] D. Callahan, S. Carr, and K. Kennedy. Improvingregister allocation for subscripted variables. In Pro-ceedings of the SIGPLAN '90 Conference on Pro-gram Language Design and Implementation, WhitePlains, NY, June 1990.[CKPK90] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Su-percomputer performance evaluation and the Perfectbenchmarks. In Proceedings of the 1990 ACM In-ternational Conference on Supercomputing, Amster-dam, The Netherlands, June 1990.[DBMS79] J. Dongarra, J. Bunch, C. Moler, and G. Stew-art. LINPACK User's Guide. SIAM Publications,Philadelphia, PA, 1979.[DCHH88] J. Dongarra, J. Du Croz, S. Hammarling, andR. Hanson. An extended set of Fortran basic linearalgebra subprograms. ACM Transactions on Math-ematical Software, 14(1):1{17, March 1988.[FST91] J. Ferrante, V. Sarkar, and W. Thrash. On estimat-ing and enhancing cache e�ectiveness. In U. Baner-jee, D. Gelernter, A. Nicolau, and D. Padua, editors,Languages and Compilers for Parallel Computing,Fourth International Workshop, Santa Clara, CA,August 1991. Springer-Verlag.

[GJG88] D. Gannon,W. Jalby, and K. Gallivan. Strategies forcache and local memory management by global pro-gram transformation. Journal of Parallel and Dis-tributed Computing, 5(5):587{616, October 1988.[IT88] F. Irigoin and R. Triolet. Supernode partitioning. InProceedings of the Fifteenth Annual ACM Sympo-sium on the Principles of Programming Languages,San Diego, CA, January 1988.[KKP+81] D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J.Wolfe. Dependence graphs and compiler optimiza-tions. In Conference Record of the Eighth AnnualACM Symposium on the Principles of ProgrammingLanguages, Williamsburg, VA, January 1981.[KMC72] D. Kuck, Y. Muraoka, and S. Chen. On thenumber of operations simultaneously executable inFortran-like programs and their resulting speedup.IEEE Transactions on Computers, C-21(12):1293{1310, December 1972.[KMM91] K. Kennedy, N. McIntosh, and K. S. McKinley.Static performance estimation in a parallelizing com-piler. Technical Report TR91-174, Dept. of Com-puter Science, Rice University, December 1991.[KMT92] K. Kennedy, K. S. McKinley, and C. Tseng. Improv-ing data locality. Technical Report TR92-179, Dept.of Computer Science, Rice University, March 1992.[Lam74] L. Lamport. The parallel execution of DO loops.Communications of the ACM, 17(2):83{93, February1974.[LRW91] M. Lam, E. Rothberg, and M. E. Wolf. Thecache performance and optimizations of blocked al-gorithms. In Proceedings of the Fourth Interna-tional Conference on Architectural Support for Pro-gramming Languages and Operating Systems, SantaClara, CA, April 1991.[McK92] K. S. McKinley. Automatic and Interactive Paral-lelization. PhD thesis, Rice University, April 1992.[McM86] F. McMahon. The Livermore Fortran Kernels: Acomputer test of the numerical performance range.Technical Report UCRL-53745, Lawrence LivermoreNational Laboratory, 1986.[Por89] A. Porter�eld. Software Methods for Improvementof Cache Performance. PhD thesis, Rice University,May 1989.[WB87] M. J. Wolfe and U. Banerjee. Data dependenceand its application to parallel processing. Interna-tional Journal of Parallel Programming, 16(2):137{178, April 1987.[WL90] M. E. Wolf and M. Lam. Maximizing parallelism vialoop transformations. In Proceedings of the ThirdWorkshop on Languages and Compilers for ParallelComputing, Irvine, CA, August 1990.[WL91] M. E. Wolf and M. Lam. A data locality optimiz-ing algorithm. In Proceedings of the SIGPLAN '91Conference on Program Language Design and Im-plementation, Toronto, Canada, June 1991.[Wol89a] M. J. Wolfe. More iteration space tiling. In Proceed-ings of Supercomputing '89, Reno, NV, November1989.[Wol89b] M. J. Wolfe. Optimizing Supercompilers for Super-computers. The MIT Press, Cambridge, MA, 1989.
Page 12


