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Abstract. Demand for instruction level parallelism calls for increas-
ing register bandwidth without increasing the number of register ports.
Emerging architectures address this need by partitioning registers into
multiple distributed banks, which offers a technology scalable substrate
but a challenging compilation target. This paper introduces a register
allocator for spatially partitioned architectures. The allocator performs
bank assignment together with allocation. It minimizes spill code and
optimizes bank selection based on a priority function. This algorithm is
unique because it must reason about multiple competing resource con-
straints and dependencies exposed by these architectures. We demon-
strate an algorithm that uses critical path estimation, delays from reg-
isters to consuming functional units, and hardware resource constraints.
We evaluate the algorithm on TRIPS, a functional, partitioned, tiled
processor with register banks distributed on top of a 4 x 4 grid of ALUs.
These results show that the priority banking algorithm implements a
number of policies that improve performance, performance is sensitive
to bank assignment, and the compiler manages this resource well.

1 Introduction

Traditional architectures offer a single register file with uniform delay for reading
from and writing to any architectural (physical) register. Register allocation
assigns variables (virtual registers) to architectural registers when possible. In
traditional graph coloring [4] and linear scan [14] algorithms, the only goal is to
minimize the overhead of load and store instructions created by spilling variables
to memory.

To address current technology scaling challenges, emerging architectures par-
tition resources such as registers, caches, and ALUs. This approach provides the
bandwidth needed for high ILP programs while increasing the resources avail-
able on the chip. Spatially partitioned processors have non-uniform register ac-
cess times, which place more burden on the register allocator, requiring a more
sophisticated algorithm that intertwines bank and register assignment. To opti-
mize for the partitioned layout of these processors, the register allocator must
consider the location of register banks and data caches, and the placement of
instructions on ALUs in order to decide which register bank to use for each regis-
ter. The delay in reading or writing a register depends on the length of the path



between the register bank and the ALU that reads or writes the register. Min-
imizing the communication latencies between partitioned components requires
changes to traditional register allocation heuristics.

This paper proposes a bank allocation method for spatially partitioned ar-
chitectures and evaluates it on the TRIPS hardware. The algorithm uses an
evaluation function that selects a bank such that register values arriving at
the same instruction at the same time are close to each other. The evaluation
function calculates a score for each bank based on previously assigned banks of
dependent instructions and the processor’s topological characteristics.

We customize this evaluation function for TRIPS, a spatially partitioned
tiled processor with register banks distributed in a row above a 4 x 4 array of
ALUs. TRIPS is an instantiation of EDGE ISA in which each instruction en-
codes its consumer instructions directly. This direct, data-flow communication
among instructions eliminates the need for an operand bypass network. Another
characteristic of EDGE ISAs is atomic block execution, which amortizes the
overhead of branch prediction and instruction cache access over a group of in-
structions. The results show that significant swings in performance are possible,
and the algorithm improves over bank oblivious allocation by an average of 6%.

2 Related Work

Conventional register allocation methods. Chaitain et al. [4] present a graph-
coloring register allocator that uses an interference graph (IG) to encode overlap
between live ranges. Nodes represent variable live ranges and an edge indicates
that the variables connected by that edge are simultaneously alive at some pro-
gram point. A graph coloring register allocator assigns architectural registers
to nodes such that two connected nodes do not receive the same color. If the
graph is not colorable by N (the number of available physical registers), then
some nodes are removed and the variables are spilled to memory to to make it
colorable. The goal of a graph coloring allocator is to achieve an N-colorable
graph with minimal spills [3, 1].

Traub et al. [18] designed linear scan allocators that greedily scan the pro-
gram variables to find a register assignment. Instead of using an interference
graph, they directly use the live interval, which is the collection of instructions
in which the variable is live. With good heuristics for ordering variables, the
compiler can achieve the same code quality as graph coloring in many cases, but
significantly faster. In this study, we start with a linear scan register allocator
and add bank assignment functionality to it.

Bank assignment for clustered processors. In clustered processors, functional
units and register files are partitioned or replicated and then grouped into on-
chip clusters [9, 12]. Clusters are connected through an inter-cluster communica-
tion network [11]. In each cluster, reads and writes are sent to the local register
file (local reads/writes) or to remote register files in another cluster through the
inter-cluster communication network. The register allocator attempts to mini-
mize the number of remote register accesses.



Ellis generated code for VLIW processors with partitioned register files with
a partitioning method called BUG (bottom-up greedy) intertwined with instruc-
tion scheduling [8]. Hiser et al. later extended that work by abstracting machine-
dependent details into node and edge weights in a graph called the register com-
ponent graph (RCG) [10]. The unconnected nodes (virtual registers) are good
candidates to be assigned to separate banks. The algorithm first creates an ideal
instruction schedule, assuming a single multiported register file. It then parti-
tions the virtual registers by evaluating the benefit of assigning a given virtual
register to each of the register banks, choosing the bank with the most benefit.
The cost model includes the necessary copy instructions for virtual registers used
in more than one partition. The algorithm runs as a pre-process before instruc-
tion scheduling and register allocation, which then use the specified banks to
schedule instructions and allocate registers in partitions.

In this paper we address bank assignment for a different type of architecture
in which registers, the ALUs, and the L1 cache banks all are physically parti-
tioned and connected together via a lightweight on-chip network. The TRIPS
architecture supports block atomic execution and direct dataflow communication
among instructions in a block. Unlike other approaches [2,12], register alloca-
tion must occur before scheduling in TRIPS. Because blocks have a fixed size,
the compiler must insert spills before placing instructions in blocks and then
schedule [6]. Cluster architectures have a fixed inter-cluster communication de-
lay, whereas in TRIPS, the register access delay depends on the distance between
the register and the ALU of the instruction reading or writing that register.

The method we propose is most similar to Hiser et al. [10], but generalizes
the register component graph to consider the arrival time of the virtual registers
to each instruction. The algorithm also considers physical layout of the processor
grid when choosing the best bank. Whereas Hiser et al. perform bank allocation
as a pre-process before register allocation, our algorithm combines bank and
register assignment. Each bank allocation decision thus uses information from
prior allocation decisions, including spilled registers.

3 Background

Spatially partitioned uniprocessor architectures allow higher frequency operation
at lower power, while exposing greater concurrency and data bandwidth. For
example, the Raw processor integrates a low-latency on-chip network into its
processor pipelines in a single-chip multiprocessor [17]. It provides programmable
network routers for static routing, in which the programmer treats the Raw tiles
as elements of a distributed serial processor. The most important characteristic of
a spatially distributed architecture is that the topology of instruction placement
is exposed in the ISA and performance is greatly dependent on both the exact
placement of instructions and the time spent routing data between instructions.

We investigate register banking on the TRIPS processor, which is a spatially
partitioned processor that uses an EDGE ISA. In an EDGE ISA, the compiler
groups instructions into large, fixed-size blocks similar to hyperblocks [13]. The
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Fig.1. A TRIPS Prototype Core

ISA employs predication to form large blocks. Within each TRIPS block, the
compiler encodes the instructions in dataflow form. Each instruction specifies
where to send its result. At runtime, an individual instruction executes when it
receives all of its operands, and each TRIPS block is executed atomically.

3.1 Overview of TRIPS

Figure 1 shows a diagram of a TRIPS processor core composed of a 2-D grid of
16 execution tiles (ETs), 4 distributed register tiles (RTs), 4 distributed L1 data
cache tiles (DTs), 5 instruction cache tiles and a global control tile. Each ET has
an integer unit, a floating-point unit, and reservation stations for instructions.
Each RT includes 32 registers, resulting in a total register file capacity of 128
registers. The TRIPS tiles communicate using a lightweight operand network
that dynamically routes operands and load/store traffic through intermediate
tiles in Y-X order.

A TRIPS program consists of a series of instruction blocks that are individu-
ally mapped onto the array of execution tiles and executed atomically [15]. The
compiler statically specifies where instructions execute, i.e., on which ET. The
hardware determines when they execute by dynamically issuing instructions af-
ter their operands become available. The architecture reads inputs from registers
and delivers them into the ET array. Operands produced and consumed within
the array are delivered directly to the target instruction. Direct instruction com-
munication requires no register file accesses. Operand arrival triggers instruction
execution, thus implementing a dataflow execution model. A TRIPS block may
hold up to 128 computation instructions with up to 8 mapped to any given ET.

The TRIPS ISA imposes several constraints on the blocks generated by the
compiler:

— The maximum block size is 128 instructions.

— The number of register reads and writes in a TRIPS block is 32 reads (eight
reads per register tile) and 32 writes (eight writes per register tile).

— The total number of executed load and store instructions in a TRIPS block
must not exceed 32.

Supports load speculation and distributed commit
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constant output

3.2 Compiling for TRIPS

To explain the interaction between the TRIPS register allocator and instruction
scheduler, we describe different phases of the TRIPS compiler backend [15].

As shown in Figure 2, the first phase is block formation, in which the com-
piler combines basic blocks into a set of TRIPS blocks integrating if-conversion,
predication, unrolling, tail duplication, and head duplication as necessary to
form optimized blocks [13]. The compiler also performs scalar optimizations that
merge redundant instructions and eliminate unnecessary predicates as an inte-
grated step of block formation. During block formation, the compiler assumes
an infinite virtual register set and uses a RISC-like intermediate form called TTL
(TRIPS Intermediate Language).

After block formation, the compiler performs register allocation of virtual
registers (variables) to physical registers. The variables defined and used inside
a single block are not register allocated because EDGE instructions directly
encode their consumer instructions. Therefore, the register allocator allocates
only variables that are live-in or live-out across blocks. The allocator enforces the
constraints on the TRIPS blocks regarding the number of reads and writes from
each register tile. Allocation must occur prior to instruction scheduling because a
spill could cause a block to violate the block size limit. In this case, the compiler
performs reverse if-conversion, splits the block, and performs allocation again,
until no spills violate the block constraints. We explain the register allocation
algorithms in detail in the following sections.

The last phase in the TRIPS compiler backend is instruction scheduling,
which outputs TRIPS Assembly Language (TASL). TASL fully specifies blocks
and within blocks it encodes dataflow target form: each instruction has an iden-
tifier and each instruction may specify one or more instruction identifiers to
which its result should be sent. The architecture maps instruction identifiers to
execution tiles [6]. TASL is portable because the hardware can map instruction
identifiers at run time based on various hardware topologies. The scheduler uses
a cost function to choose an execution tile on which to place each instruction.
This function considers features such as the communication among the depen-



dent instructions, network delay, and network contention. It also considers the
location of the register bank (RT) of each register read or written by that in-
struction. The scheduler needs to know the register bank to which each variable
is allocated to produce an efficient schedule.

3.3 Base Linear Scan Register Allocator

This allocator simply extends a linear scan algorithm. It performs a liveness
analysis to compute the live range information at a block granularity. It sorts
variables for allocation using a priority function similar to Chow and Hennessey’s
priority function [5]:

Prioritypgr(vr) = Z (Dix ST COST + Ui+ LD_COST) (1)
i=LR(vr)

where binary values Di and Ui indicate whether the variable is defined or used
in block B;. ST_COST and LD_COST are the delays associated with store and
load instructions, respectively. LR(vr) returns a list of blocks in which variable
vr is live. For each variable, the allocator considers all available physical registers,
regardless of their register bank. For each register, the allocator tests for:

— Live range conflicts: The register live range must not conflict with the
variable live range (i.e., the register has not already been assigned to another
variable with an overlapping live range).

— Block read/write conflicts: The assignment must not violate the limit
on the number of register reads or writes in the block (32 reads and 32
writes). Also, the assignment must not violate the limit on the number of
bank accesses (8 reads and writes per bank) for all blocks that read or write
the variable.

The allocator assigns the virtual register to a candidate register that meets these
criteria and updates the live range of the physical register to encompass the live
range of that variable. We configure this algorithm to perform bank-oblivious
and round-robin assignments. Bank oblivious uses all the registers in the first
bank, then the second, and so on. Round robin cycles through the banks as it
assigns physical registers to variables in priority order.

If no physical register satisfies both the live range and bank conflict tests, the
register allocator inserts spill loads and stores inside each block that uses or de-
fines that virtual register. After a spill, register allocation is repeated to account
for new live ranges generated by the spill code. An indirect effect of spilling on
TRIPS that does not exist in conventional processors is that added loads and
stores increase block sizes. If a block size exceeds the maximum (128 instruc-
tions for TRIPS), the block becomes invalid. The compiler forms valid blocks by
splitting each invalid block into two blocks using reverse if-conversion [19], which
creates new live ranges, and then performs register allocation again. To reduce
the probability of splitting blocks, the allocator first identifies blocks that would
overflow as a consequence of spilling and adds them to a list called SIBLOCK S



(spilling invalidate blocks). Using this list, the allocator increases the priority
associated with registers used in those blocks:

SizeB;
Priorit = Priorit _ .
riorityppcE(vr) riorityppr(vr) + o | Z 198 SizcB,
i=LR(vr)NSIBLOCKS
(2)

where « is a fixed value greater than all possible values of Prioritygpae(vr),
LR represents the live range of a virtual register, and SizeB; is the size of
block B;. Based on this function, any virtual register live in one of the blocks in
SIBLOCKS has higher priority than all virtual registers without this property.

4 Bank Assignment Algorithm for Spatially Partitioned
Processors

This section explains the bank allocation algorithm for spatially partitioned
processors. This algorithm, however, is not specific to the TRIPS processor and
can be applied to other spatially partitioned processors. Therefore, this section
explains the general algorithm, and the next section describes how we customize
the algorithm for the TRIPS processor.

In spatially partitioned processors a lightweight network connects the register
banks, ALUs, and data cache banks, which form a distributed 2-D substrate. A
virtual register (variable) can be allocated to any of the register banks on the
substrate, but the delay of accessing each register bank from an ALU on the
substrate depends on the distance between the register and the ALU, as well as
the contention in the network. For example, consider the sample substrate shown
in Figure 3 with three ALUs (Ag..2) and three register banks (By. 2) connected
by the single delay-per-hop network shown with black lines. This figure shows
two bank assignments for the variables vy, .3 where variables vy and v are inputs
to instruction g in A; and variables vy and v are inputs to instruction ¢; in
Ay. The thick grey lines show the data transfers from register banks to the
destination ALUs and the number beside each arrow indicates the arrival time
of the corresponding register to that ALU. In the bank assignment on the left,
the distances between variables vy, v1 and their destination instructions are three
and two hops, respectively. However, the arrival of vy or v; will be delayed by
at least one cycle because both vy and vy use the same path, i.e., the path that
connects register bank By to Ag. Since the network only sends one value in
each cycle, one of them will be delayed. Similarly, there is a network contention
between variables vy and v3 in the bank assignment on the right. This bank
assignment, however, places dependent variables vy and vz in the same bank,
resulting in fewer network hops, lower network congestion, and better overall
timing for both instructions: a minimum network delay of 2 rather than 3.

The bank assignment algorithm first creates a graph called a register depen-
dence graph (RDG). It then chooses an order in which to attempt to allocate
virtual registers to architectural registers. For every virtual register in that or-
dered list, it uses a bank score evaluation function to calculate the benefit of
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Fig. 3. Network delays resulting from different register bank assignments for a
sample substrate.

placing the virtual register in each bank, and chooses the bank with the maxi-
mum score. The score for each bank is based on the banks of already allocated
virtual registers and the weights of the edges of the RDG connecting that virtual
register to other virtual registers. The register allocator next allocates the virtual
register to one of the physical registers in that bank and the process continues.

4.1 Register Dependence Graph

The algorithm first builds a register dependence graph with nodes representing
virtual registers and edges indicating dependences between virtual registers.

The weight on each edge between two virtual registers indicates the affinity
between those two virtual registers. Lower values on an edge indicate that placing
the virtual registers close together will improve the overall delay of the critical
path. To create the RDG, the algorithm processes the blocks in the program
one at a time. For each block, it estimates the execution time of instructions
using an ideal schedule on the acyclic data flow graph (DFG) of that block. This
ideal schedule assumes that all of the block’s input registers arrive at the same
time, and that there are no delays due to network contention. The algorithm
traverses the DFG in a breadth-first order. For each instruction, it estimates
the time its output virtual register is ready by adding the fixed execution delay
associated with that instruction to the time when all its inputs are ready. Using
this ideal schedule, the algorithm optimistically estimates when data from an
input register will be available to its consumer instructions in the block DFG.

In a second pass, the algorithm traverses the DFG, keeping track of the
variables that are ancestors of each instruction in the critical path. When an
instruction has two different variables as ancestors, the algorithm places an edge
between those variables with a weight equal to the difference between their
estimated arrival times at that instruction. If an edge already exists between
two virtual registers, the algorithm keeps track of the minimum weight for that
edge. An edge with a low weight indicates that the two virtual registers should
be placed close together.

Figure 4 provides sample intermediate code for a block, the block’s DFG
with the ideal estimated times, and the corresponding RDG. Variables a, b and
¢ are the inputs to the block and must be kept in registers (other variables
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are temporary values within the block and are handled by the hardware). For
this example, we assume that the execution time of a mult instruction is three
cycles and the execution time of all other instructions is one cycle. The critical
path of the block is the chain including the mult, not, and sub instructions. The
chain of instructions coming from a and b intersect at the mult instruction at an
estimated time of 1 cycle for both a and b. Because the mult instruction is on the
critical path, we set the value on the link between a and b in the RDG to zero,
meaning that the two virtual registers should be as close together as possible.

The chain of instructions originating at b intersects with the chain of instruc-
tions originating at c at the add instruction, and also at the sub instruction. The
add instruction is not on the critical path, so this instruction is ignored. The sub
instruction is on the critical path, however, so the weight of the edge between
b and c is set to the difference between the arrival time of the data from each
register at the sub instruction, (5 — 3). Since we must perform scheduling after
register allocation, the allocator assumes an ideal schedule to estimate latencies
between instructions.

Each node in the RDG contains the following information for the correspond-
ing virtual register:

— Loop nesting depth: If the virtual register is used or defined in more than
one loop we select its maximum loop nesting depth.

— Total number of instructions affected by the virtual register: The
number of instructions in the DDG which depend directly or transitively on
this virtual register. For example, in Figure 4 the virtual registers a and b
affect three and four instructions, respectively.

4.2 Bank Assignment

After building the RDG, the algorithm begins a combined bank assignment and
register allocation phase. For a given virtual register, it first chooses the best
register bank according to a heuristic function, and then tests if a physical reg-
ister in that bank is available. If so, it assigns the virtual register to the physical
register. Otherwise, the allocator tries to find an alternative register in another
bank. Figure 5 shows the bank assignment algorithm. PriorityOrder determines



for each vr in PriorityOrder
bestBank = 0
bestScore = 0
for each register bank b
bankScore = CalculateBankScore (vr, b)
if (bankScore > bestScore)
bestScore = bankScore
bestBank = b
elsif (bankScore == bestScore)
bestBank = TieBreak (vr, bestBank, b)
reg = ChoosePhysicalRegisterFromBank(bestBank, vr)
if (reg found)
Replace vr with 7 in the code and update data for vr and bestBank
else
reg = ChoosePhysicalRegister From OtherBanks(bestBank, vr)
if (reg found)
Replace vr with 7 in the code and update data for vr and bestBank
else
Spill vr

Fig. 5. Bank Assignment Algorithm

the order in which the virtual registers are allocated. In classic register alloca-
tion studies, the priority for each virtual register is computed based on spill code
overhead produced if that virtual register is spilled [4,5]. Because bank assign-
ment is done in conjunction with register allocation, however, the priority order
must also take into account the dependencies between virtual registers and their
criticality. We define a simple priority function as follows:

Priorityspatiar(vr) = 10LeorNestingDepth . Nuyn O f Bdges(vr, RDG).  (3)

This function prioritizes virtual registers that have more dependencies with other
virtual registers and affect more instructions in the DDG.

The bank allocation algorithm uses the Calculate BankScore cost function.Figure 6
shows a basic implementation of this function that uses the following compo-
nents:

— Dependence score: A score based on the dependencies between the current
virtual registers and the already allocated virtual registers. The function ac-
cumulates the weights of the RDG edges between the current virtual register
and all virtual registers assigned to the current bank and its neighbor banks
(veferred to as NeighborBankSet in Figure 6).

— Bank wutilization penalty: The number of registers already assigned to the
bank. This component favors distributing virtual registers evenly across the
banks to improve concurrency.

10



CalculateBankScoreBasic (vr, bank)
return CalculateDependenceScore(vr, bank) - bank.numAssigned VR

CalculateDependenceScore (vr, bank)

score = 0

for each nur RDG neighbor of vr assigned to NeighborBankSet(bank)
score += (RDG-MAX-WEIGHT - RDG Weight(vr, nor))

return score

Fig. 6. Basic Implementation of CalculateBankScore Function

TRIPS_TieBreaker (vr, bankl, bank2)

if (vr.af fectedCritical Loads + vr.af fectedCritical Stores > 0)
return min(bankl, bank2)

else
return maz(bankl, bank2)

Fig. 7. TieBreaker Function for TRIPS

The algorithm uses a tie breaker function, TieBreak, to determine the bank when
the scores of two banks for a given virtual register are identical. The definition of
NeighborBankSet and TieBreaker functions depends on the physical layout and
the characteristics of the processor grid. We explore implementations of these
functions for TRIPS processor.

4.3 Customizing the Bank Score Evaluation Function for TRIPS

Because TRIPS has fewer register banks than execution tiles, we expect heavy
traffic on the links connecting register banks to the execution tiles, and con-
tention on those links affects performance. We implement a TieBreaker function
to separate the load/store traffic, which flows from register banks to the data
tiles, from the rest of the traffic, as shown in Figure 7. This function priori-
tizes register banks on the left (i.e., lower bank numbers) if there are critical
load or store instructions dependent on the arrival time of the current virtual
register. Otherwise, it prioritizes the register banks on the right to move the
non-memory traffic out of the way of traffic to the data cache banks to avoid
network contention.

5 Experimental Results

To evaluate performance we used the TRIPS hardware. The TRIPS chip is a
custom 170 million transistor ASIC implemented in a 130nm technology. For
these experiments, we ran the processor at 366MHz. The capacity of the L1
cache, L2 cache and main memory were 32 KB, 1 MB and 2GB, respectively. We
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collected cycle counts from the hardware performance counters using customized
libraries and a runtime environment developed by the TRIPS team [20]. We used
C and Fortran programs from the EEMBC benchmark suite with the iteration
count set to 1000, and from the SPEC2000 benchmark suite [7,16].

For comparison, we adapted Hiser et al.’s algorithm (HCSB) to work with an
EDGE ISA. We add a link in the RDG between two virtual registers if one is the
input to a hyperblock, the other is an output from that same hyperblock, and
there exists a dataflow path within the hyperblock from the input virtual register
to the output virtual register. For example, consider the block in Figure 4. There
will be edges between h and each of the inputs (a, b and ¢) in the RDG. The
remaining operations from HCSB carry over without changes to an EDGE ISA.

We compare the following bank alloction algorithms on TRIPS:

Bank Oblivious: The linear scan register allocation algorithm explained in
Section 3.3 with no bank assignment mechanism. This algorithm uses all of
the architectural registers in the current bank before using the registers in
the next bank.

Round Robin: The linear scan register allocation algorithm explained in
Section 3.3 using round-robin bank allocation. This allocator chooses physi-
cal registers from banks in a round robin fashion.

HCSB: Our implementation of Hiser et al. [10].

Spatial: The bank allocation algorithm for spatially partitioned processors
using the bank allocation priority function shown in Equation 3 and the
basic bank score function shown in Figure 6.

Table 1 contains the number of static spill load and store instructions for each
of the four allocators. Register allocation adds spill code to only 5 benchmarks
out of the 39 EEMBC and SPEC benchmarks we evaluated. This low rate of
spill code generation is partly because TRIPS has more registers than conven-
tional architectures. In addition, the TRIPS compiler converts temporary values
defined and used within a block to direct instruction communication that does
not go through the register file, as it would on a conventional RISC processor.

For the benchmarks in Table 1, the spatial and HCSB bank allocators pro-
duce less spill code compared to the bank oblivious and round-robin allocators.
The spatial and HCSB allocators prioritize variables based on the number of de-
pendences according to the priority function shown in Equation 3. As a result,
they allocate critical variables with higher numbers of dependences first. These
dependences directly indicate the number of spill instructions. By prioritizing
the variables with the most dependences first, if a variable later must be spilled,
then it will likely have fewer dependences and thus require less spill code.

Figure 8 provides speedups using different bank assignment algorithms rel-
ative to the performance of the bank oblivious allocator. On average, the spa-
tial bank assignment outperforms the other register allocators. The round-robin
algorithm achieves a 3% performance improvement over the bank oblivious al-
gorithm. This performance improvement results from a more balanced register
distribution. HCSB improves performance over the round-robin bank allocation

12



Table 1. Number of static spill load and store instructions. For the remaining
benchmarks, none of the allocators generate any spill instructions.

Program|Benchmark suite|Bank oblivious|Round robin|HCSB|Spatial
a2time EEMBC 111 111 30 31
applu SPEC 528 514 365 | 382

apsi SPEC 328 220 183 | 183
equake SPEC 30 30 10 10
mgrid SPEC 44 21 8 12

BRound Robin
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Fig. 8. The speedup achieved using different bank assignment algorithms for
EEMBC on TRIPS compared to a bank-oblivious linear scan allocator

by placing dependent variables in nearby register banks. This algorithm, how-
ever, does not consider the arrival times of variables or the topology of the
processor substrate. The spatial bank assignment algorithm places the virtual
registers in the register banks according to their arrival times at the critical
instructions. It also places registers used by critical load or store instructions
to the register banks located close to the cache banks. On average, this bank
assignment algorithm performs 6% better than the bank oblivious assignment.

For some programs, the spatial bank allocator performs significantly better
than other allocators. The a2time benchmark has the largest speedup when using
the spatial or HCSB allocators. Table 1 shows that a2time is the only EEMBC
benchmark for which spill code is generated, and that the HCSB and spatial
algorithms significantly reduce spilling for this benchmark.

In fbital, the spatial bank allocator achieves a high speedup over the bank
oblivious allocator, and the round-robin allocator achieves the second best speedup.
Figure 9 (a) illustrates the simplified version of the most frequently executed
block of this program. In the critical path of this block (the grey lines in the
figure), the computation chain starting from two virtual registers v; and vs ends
by writing to variable v,. Variables vy and vy are also inputs to a store mem-
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Fig. 9. The critical paths of fbital and djpeg EEMBC programs

ory operation. By separating memory and computation traffic, the spatial bank
allocator places vy, v1 and ve in banks 0, 2, and 3, respectively. However, the
HCSB bank allocator, which considers only register dependencies, places these
dependent variables in banks 2, 1, and 1, respectively. Because of this allocation,
the critical path suffers extra delays caused by the memory traffic of the store
instruction. Round robin randomly places v; and v, in banks 2 and 3, achieving
better results than HCSB.

In the critical path of djpeg, a predicate condition is computed using an
input variable, as shown in Figure 9 (b). Several parallel memory operations are
executed on both predicate paths. The round-robin bank allocator places the
critical variable in bank 0, which adds some delays to the predicate computations
because of the high memory traffic. The HCSB allocator places that variable
in bank 3, which is too far from the memory banks and adds some delays to
the memory operations. Considering memory bank locations, the spatial bank
allocator places that variable in bank 2, which results in the highest speedup
over the bank oblivious allocator.

For some programs, round robin and HCSB perform better than spatial.
Examples of such programs are aifirfO1, aiifft01 and matrix01. We suspect that
in these programs, the ideal schedule model used by the spatial bank assignment
algorithm to generate the register dependence graph has inaccuracies caused by
runtime resource constraints such as long latency cache misses.

Figure 10 illustrates the speedups using different bank assignment allocators
relative to the performance achieved using the bank oblivious allocator for the
SPEC benchmarks. Register allocation does not affect the SPEC benchmarks as
strongly as it affects the EEMBC benchmarks, most likely because the SPEC
benchmarks are limited by other factors such as memory latency or instruction
cache pressure. As a result, benchmarks such as gzip, bzip, and equake are not
strongly affected. HCSB and round robin perform similarly on average, while the
spatial bank allocator performs slightly better. This speedup may be the result
of separating memory traffic from computation traffic.

6 Conclusions

In spatially partition processors, the delay of accessing registers depends on the
location of the register files and the ALUs on the grid. Consequently, we in-
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Fig. 10. The speedup achieved using different bank assignment methods for the
SPEC benchmarks on TRIPS

troduce a register allocator that avoids spilling critical registers and estimates
operand arrival times for critical instructions to choose banks for dependent reg-
isters wisely. The allocator also considers the topological characteristics of the
hardware. In TRIPS, the memory tiles are located on the left side of the grid.
Considering the location of register files, the spatial allocator separates mem-
ory traffic from computation traffic when assigning banks to critical registers.
In addition, this allocator places dependent critical registers close together, so
that critical instructions receive their operands faster. The individual effects of
proximity of dependent registers and separation of memory and computation
traffic is still an open question and requires further research.
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