
Lesson 05-01:
Transport Layer Intro

CS 326E Elements of Networking
Mikyung Han

mhan@cs.utexas.edu

1

mailto:mhan@cs.utexas.edu

Link

Network

Transport

Application

Physical802.3 PHY

Ethernet,WiFi

IP

TCP, UDP

FTP, HTTP, SMTP

Internet
Reference Model

bit-by-bit or symbol-by-symbol delivery

data transfer between physically adjacent nodes

host to host data transfer across different network

process to process data transfer

application specific needs

Example Protocols Responsible for

2
2

Outline

1. Why Transport Layer?

3

4

What is transport layer responsible for?

■What are these endpoints
called?

Transport layer’s task is
to deliver packets to the right application process

■Provides logical one hop between
two application processes running on
different hosts

mobile network

national or global ISP

local or
regional ISP

home network content
provider
network datacenter

network

enterprise
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

5

■What are the two most commonly used
protocols in transport layer?

■ Packets in transport layer are called
Segments

Sockets!

TCP or UDP

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg§ is passed an application-

layer message
§ determines segment

header fields values
§ creates segment
§ passes segment to IP

transport
ThTh app. msg

6

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg § extracts application-layer
message

§ checks header values
§ receives segment from IP

Th app. msg

§ demultiplexes message up
to application via socket

7

Outline

1. Why Transport Layer?
2. UDP vs TCP

8

9

UDP?

TCP vs UDP Features

mobile network

national or global ISP

local or
regional ISP

home network content
provider
network datacenter

network

enterprise
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

10

• TCP:Transmission Control Protocol
• reliable, in-order delivery
• congestion control
• flow control
• Connection-setup

• UDP: User Datagram Protocol
• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

• Both has NO guarantee
on delay or bandwidth

11

When would you prefer UDP over TCP?

Another difference is
TCP is connection-oriented while UDP is connection less!

What do we mean by “connection”?

12

13

What is connection here?

• BTW, this is different from Internet connectivity
• "Oh I don’t have WiFi connection”
• This is NOT what we are talking about

• It is a short form of “connection-establishment”

Analogy: Chocolate Handing Out Protocol (CHOP)

CHOP 1

o Whoever stops by to your station,
you hand out the pre-packaged
chocolate no matter what

CHOP 2

o Before you handout chocolate, you ask
o How many they want
o What kind they want
o What time they want
o Their names and contact

Purpose is to hand out chocolates to people

o After the agreement, you then hand out
the chocolate accordingly

14

“Connection” in this context means
establishing agreement prior to actual data exchange

15

We say the protocol is connection-oriented

• There exists “establishment phase” prior to actual data exchange
o Aka hand-shake

• Applies to all layers, not just transport layer
• Connection establishment and data exchange can happen over

the same “channel”
o Such as same TCP connection

• Sometime connection establishment can be done over a different mean
o Connection establishment is done in “control channel”
o Data exchange can be done separately in “data channel”

Recap: we say the protocol is stateful

• The protocol saves any state regarding the other party: session
state)
o At least one side (server side) saves state regarding the other (receiver) side
o Or both side save info regarding the other side

UDP is stateless and TCP is stateful

16

• Bottom line is “how much do I care about the other party”?
o Anything beyond the src address/port that I need to ask and save?

• Do I need to do something differently based on whom I am talking with?
o Send more/less traffic
o Send specific packets

• Establishing how to differ would be connection-oriented part

• Saving that info would be the stateful part

Can connection-oriented protocol be stateless?

There exists some correlation between being
state-less/full and connection-less/-oriented

17

Can connection-oriented protocol be stateless?

In order to be stateless but still connection-oriented…
where to save the ”states” related to connection?

• Where do we normally save these states at?
o Inside server machine (or client machine as well)

• Where else besides server or client to “record” states?

Without anyone saving the states at host,
each party can specify the agreement in the packet header!

18

19

Connection-oriented stateless protocol example

• Both server and client agrees to use WiFi channel # 1 to communicate
o WiFi Channels

• Server and client exchanges data without saving any other info
but just specify Ch 1 info in the packet header

21

UDP is connection-less stateless protocol

• UDP doesn’t really care who it is talking with
o Yes, the receiving end does take a look at IP:port of the source and

replies back to that IP:port but that’s about it
• No need to establish custom “channel” for the communication

• UDP does not maintain any states of who they are
o The upper application layer may care and maintains states but not in transport

layer
• Same socket are shared to receive messages from multiple clients

UDP demultiplexing
DatagramSocket serverSocket = new

DatagramSocket
(6428);

transport

physical

link

network

application

P2
transport

physical

link

network

application

P1

transport

physical

link

network

application

P3

DatagramSocket mySocket1 = new
DatagramSocket (5775);

DatagramSocket mySocket2 = new
DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

22

23

TCP is connection-oriented stateful protocol

• TCP cares about with whom it’s talking
• Pre-establishes agreement for data exchange: TCP hand-shake
• States are maintained per connection

o ACK, sequence number
• The connection is identified by 4 tuple

o Each src(IP:port) – dst(IP:port) pair is a “connection”
• Typically, a separate socket is used for each client unlike UDP

TCP uses a separate socket for each client

• Each client has different IP:port
• Server has one listening socket that all new client requests comes in

o [listening socket] Well-known IPs:ports
• Server communicates with each client with a separate socket

o [servicing socket 1] IPs:ports – IPc1:portc1
o [servicing socket 2] IPs :ports – IPc2:portc2
o [servicing socket 3] IPs :ports – IPc3:portc3

TCP socket is identified by 4 tuples!

24

TCP demultiplexing

transport

physical

link

network

application

P2
transport

physical

link

application

P1

transport

physical

link

network

host: IP
address A

host: IP
address C

network

application

P3 P4

source IP,port: A,9157
dest IP, port: B,123

source IP,port: B,123
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,456

source IP,port: C,9157
dest IP,port: B,789

server: IP
address B

Three segments, all destined to IP address: B
are demultiplexed to different sockets

25

TCP header vs UDP header

26

UDP socket programming example

How about DNS?

• Is it stateful or stateless?
• Is it connection-less or connection-oriented?

How about SSH?

• Is it stateful or stateless?
• Is it connection-less or connection-oriented?

Outline

1. Why Transport Layer?
2. TCP vs UDP
3. Project 1

30

31

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

32

DNS is is connection-less stateless protocol

• DNS doesn’t really care who is asking the question
o The server just take notes on src IP:port and simply replies back to

that IP:port. That’s about it. No notion of “session”
• DNS does not maintain any states of who the clients are

• No need to establish custom “channel” for the communication in the
application layer
o Also, no connection establishment in transport layer as well (UDP)

• Each DNS query is completely independent

