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Outline

1. Why Transport Layer?
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What is transport layer responsible for?



■What are these endpoints 
called? 

Transport layer’s task is
to deliver packets to the right application process

■Provides logical one hop between 
two application processes running on 
different hosts
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■What are the two most commonly used 
protocols in transport layer? 

■ Packets in transport layer are called
Segments

Sockets!

TCP or UDP
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Outline

1. Why Transport Layer?
2. UDP vs TCP
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UDP?



TCP vs UDP Features
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• TCP:Transmission Control Protocol
• reliable, in-order delivery
• congestion control
• flow control
• Connection-setup

• UDP: User Datagram Protocol
• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

• Both has NO guarantee 
on delay or bandwidth
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When would you prefer UDP over TCP?



Another difference is
TCP is connection-oriented while UDP is connection less!

What do we mean by “connection”?
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What is connection here?

• BTW, this is different from Internet connectivity
• "Oh I don’t have WiFi connection”
• This is NOT what we are talking about

• It is a short form of “connection-establishment”



Analogy: Chocolate Handing Out Protocol (CHOP)

CHOP 1

o Whoever stops by to your station, 
you hand out the pre-packaged 
chocolate no matter what

CHOP 2

o Before you handout chocolate, you ask
o How many they want
o What kind they want
o What time they want
o Their names and contact

Purpose is to hand out chocolates to people

o After the agreement, you then hand out 
the chocolate accordingly
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“Connection” in this context means 
establishing agreement prior to actual data exchange
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We say the protocol is connection-oriented

• There exists “establishment phase” prior to actual data exchange
o Aka hand-shake

• Applies to all layers, not just transport layer
• Connection establishment and data exchange can happen over 

the same “channel”
o Such as same TCP connection

• Sometime connection establishment can be done over a different mean
o Connection establishment is done in “control channel”
o Data exchange can be done separately in “data channel”



Recap: we say the protocol is stateful

• The protocol saves any state regarding the other party: session 
state)
o At least one side (server side) saves state regarding the other (receiver) side
o Or both side save info regarding the other side

UDP is stateless and TCP is stateful
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• Bottom line is “how much do I care about the other party”?
o Anything beyond the src address/port that I need to ask and save?

• Do I need to do something differently based on whom I am talking with?
o Send more/less traffic
o Send specific packets

• Establishing how to differ would be connection-oriented part

• Saving that info would be the stateful part

Can connection-oriented protocol be stateless?

There exists some correlation between being 
state-less/full and connection-less/-oriented
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Can connection-oriented protocol be stateless?



In order to be stateless but still connection-oriented… 
where to save the ”states” related to connection?

• Where do we normally save these states at?
o Inside server machine (or client machine as well)

• Where else besides server or client to “record” states?

Without anyone saving the states at host,
each party can specify the agreement in the packet header!
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Connection-oriented stateless protocol example

• Both server and client agrees to use WiFi channel # 1 to communicate
o WiFi Channels

• Server and client exchanges data without saving any other info 
but just specify Ch 1 info in the packet header
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UDP is connection-less stateless protocol

• UDP doesn’t really care who it is talking with
o Yes, the receiving end does take a look at IP:port of the source and 

replies back to that IP:port but that’s about it
• No need to establish custom “channel” for the communication

• UDP does not maintain any states of who they are
o The upper application layer may care and maintains states but not in transport 

layer
• Same socket are shared to receive messages from multiple clients



UDP demultiplexing
DatagramSocket serverSocket = new 

DatagramSocket
(6428);
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DatagramSocket mySocket1 = new 
DatagramSocket (5775);

DatagramSocket mySocket2 = new 
DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ? 
dest port: ?

source port: ? 
dest port: ?
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TCP is connection-oriented stateful protocol

• TCP cares about with whom it’s talking
• Pre-establishes agreement for data exchange: TCP hand-shake
• States are maintained per connection

o ACK, sequence number
• The connection is identified by 4 tuple

o Each src(IP:port) – dst(IP:port) pair is a “connection”
• Typically, a separate socket is used for each client unlike UDP



TCP uses a separate socket for each client

• Each client has different IP:port
• Server has one listening socket that all new client requests comes in

o [listening socket] Well-known IPs:ports
• Server communicates with each client with a separate socket

o [servicing socket 1] IPs:ports – IPc1:portc1
o [servicing socket 2] IPs :ports – IPc2:portc2
o [servicing socket 3] IPs :ports – IPc3:portc3

TCP socket is identified by 4 tuples!
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TCP demultiplexing
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Three segments, all destined to IP address: B 
are demultiplexed to different sockets
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TCP header vs UDP header
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UDP socket programming example



How about DNS?

• Is it stateful or stateless?
• Is it connection-less or connection-oriented?



How about SSH?

• Is it stateful or stateless?
• Is it connection-less or connection-oriented?



Outline

1. Why Transport Layer?
2. TCP vs UDP
3. Project 1
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DNS is is connection-less stateless protocol

• DNS doesn’t really care who is asking the question
o The server just take notes on src IP:port and simply replies back to 

that IP:port. That’s about it. No notion of “session”
• DNS does not maintain any states of who the clients are

• No need to establish custom “channel” for the communication in the 
application layer
o Also, no connection establishment in transport layer as well (UDP)

• Each DNS query is completely independent


