
Lesson 05-04:
TCP Congestion Control

CS 326E Elements of Networking
Mikyung Han

mhan@cs.utexas.edu

1

mailto:mhan@cs.utexas.edu

Link

Network

Transport

Application

Physical802.3 PHY

Ethernet,WiFi

IP

TCP, UDP

FTP, HTTP, SMTP

Internet
Reference Model

bit-by-bit or symbol-by-symbol delivery

data transfer between physically adjacent nodes

host to host data transfer across different network

process to process data transfer

application specific needs

Example Protocols Responsible for

2
2

Outline

1. Approaches to Congestion Control

3

4

Congestion control has 2 approaches

• First, solely based on sender’s detection
o Loss-based: Increase sending rate until a loss (timeout) and then cut back
o Delay-based: Do the same until RTT reaches RTTcongested

• Second, network assisted approach
o Sender, network core (routers), and the receiver all participates

5

Let’s first look at the loss-based approach!

• AIMD

• TCP CUBIC

Outline

1. Approaches to Congestion Control
2. TCP’s AIMD

8

TCP sending rate ~
RTT
cwnd bytes/sec

TCP sending rate is limited by congestion window cwnd

LastByteSent- LastByteAcked < cwnd
last byte
ACKed

sender sequence number space
cwnd

available but
not used

last byte sent

sent, but not-
yet ACKed
(“in-flight”)

cwnd is dynamically adjusted in response to observed congestion
9

True/False? cwnd is a fixed value

How should we adjust cwnd?

We need to probe what the optimal sending rate is
at the moment!

AIMD: sender increases sending rate until packet loss
then decrease sending rate on loss

AIMD sawtooth
behavior: probing

for bandwidth

T
C

P
se

nd
er

 S
en

di
ng

 r
at

e

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase
cut sending rate in half at each
loss event

Multiplicative Decrease

9

AIMD’s multiplicative decrease

Different versions Reno vs Tahoe
■ Reno: Cut to roughly half on loss detected by triple duplicate ACK
■ Tahoe: Cut to 1 MSS when loss detected (either t-d-ACK or timeout)

■ AIMD has been shown to:
• optimize congested flow rates network wide!
• have desirable stability properties
• WITHOUT any coordination

10

Outline

1. Approaches to Congestion Control
2. AIMD
3. 3 States in TCP Congestion Control

11

TCP CC has 3 states implementing AIMD

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

12

TCP slow start is not that slow

■when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS
• double cwnd every RTT
• done by incrementing cwnd for

every ACK received

Host A Host B

Initial rate is slow but ramps up exponentially fast!
13

one segment

RT
T

time

two segments

four segments

Two states that increases cwnd

■Slow Start does exponential increase (initial ramp up)

■When should we switch from exponential to linear increase?

When it reaches half of last max cwnd value just before the loss

■Congestion Avoidance does linear increase

SSthresh stores half of last max cwnd value

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
■variable Ssthresh (slow start threshold)

■on loss event, ssthresh is set to 1/2 of
cwnd just before loss event

X

If cwnd < ssthresh, we are in slow start

14

If cwnd ≥ ssthresh, we are in congestion avoidance

Tahoe vs Reno’s fast recovery

Tahoe (no fast recovery)
• ssthresh = cwnd/2
• cwnd = 1 MSS

Reno

• ssthresh = cwnd/2
• cwnd = ssthresh + 3MSS

Tripl
e d

upe
 AC

K

15

Summary: TCP congestion control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

L
cwnd > ssthresh

congestion
avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow
start

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

L
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

17

Outline

1. Approaches to Congestion Control
2. 3 States in TCP Congestion Control
3. TCP’s AIMD
4. TCP CUBIC

16

17

Is there a better way
to “probe” available bandwidth?

TCP CUBIC: more aggressive initially but
more cautious later with higher probability of loss

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher
throughput in this
example

§ Insight/intuition:
• Wmax: sending rate at which congestion loss was detected
• congestion state of bottleneck link probably (?) hasn’t changed much
• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then

approach Wmax more slowly

20

TCP CUBIC has higher throughput than Reno

§ K: point in time when TCP window size will reach Wmax
• K itself is tunable

• larger increases when further away from K
• smaller increases (cautious) when nearer K

TCP
sending

rate

time

TCP Reno
TCP CUBIC

Wmax

t0 t1 t2 t3 t4

§ increase W as a function of the cube of the distance between current
time and K

21

CUBIC is default in Linux,
widely used among popular

Web servers

Outline

1. Approaches to Congestion Control
2. 3 States in TCP Congestion Control
3. TCP’s AIMD
4. TCP CUBIC
5. Delay-based CC

20

Delay-based TCP CC monitors throughput

Keeping the pipe “just full enough, but no fuller”

RTTmeasured

21

■ RTTmin - minimum observed RTT

■ uncongested throughput - cwnd/RTTmin

if Throughputmeasured “very close” to cwnd/RTTmin //not congested
increase cwnd linearly

else if Throughputmeasured “far below” cwnd/RTTmin //congested
decrease cwnd linearly

bytes sent
in last RTT interval

RTTmeasured
Throughputmeasured =

Outline

1. Approaches to Congestion Control
2. 3 States in TCP Congestion Control
3. TCP’s AIMD
4. TCP CUBIC
5. Delay-based CC
6. Network assisted CC

22

source

application
TCP

network
link

physical

destination

application
TCP

network
link

physical

Network-assisted approach:
Explicit congestion notification (ECN)
§ two bits in IP header (ToS field) marked by network router to indicate congestion
• policy to determine marking chosen by network operator

§ congestion indication carried to destination
§ destination sets ECE bit (ECN-Echo) on ACK segment to notify sender of congestion

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

25
ECN approach involves both IP and TCP

Outline

1. Approaches to Congestion Control
2. 3 States in TCP Congestion Control
3. TCP’s AIMD
4. TCP CUBIC
5. Delay-based CC
6. Network assisted CC
7. TCP fairness

24

TCP fairness
Fairness goal: if K TCP sessions share same bottleneck link
of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2

25

Q: is TCP Fair?
Example: two competing TCP sessions:
§ additive increase gives slope of 1, as throughout increases
§multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
ut

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A: Yes, under idealized
assumptions:
§ same RTT
§ fixed number of sessions

only in congestion
avoidance

Is TCP fair?

28

27

Fairness: must all network apps be “fair”?
Fairness and UDP
■multimedia apps opts out TCP
• do not want rate throttled by

congestion control

■instead use UDP:
• send audio/video at constant rate,

tolerate packet loss

Fairness, parallel TCP connections
■application can open multiple parallel

connections btw 2 hosts
(web browsers, etc.)
■Link of rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10
• new app asks for 11 TCPs, gets R/2

There is NO “Internet Police” policing use of bandwidth

28

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

