Lesson 07-02: Network Security - Tor Hidden Service

CS 356 Computer Networks Mikyung Han mhan@cs.utexas.edu

Tor: Enabling Anonymous Communication Over the Internet

Surface Web

YAHOO! Google Treddit CNN.com

Deep Web

Dark Web

Academic databases Medical records Financial records Legal documents Some scientific reports Some government reports Subscription only information Some organization-specific repositories

TOR Political protest Drug trafficking and other illegal activities

96%

of content on the Web (estimated)

Download Tor Browser 🗸

Outline

Here I. Network Security Recap

Security Primer

Public Key Infrastructure (PKI)

ex) RSA, Elliptic Curve, etc.

PK public key SK private key

Alice can send the suggested share key to Bob encrypting with Bob's public key

PK public key SK private key

PKI is also used in digital signature

Provides authenticity and integrity of digital messages

- Authenticity: The message was created by the known sender
- Integrity: The message was not altered in transit

PK public key SK private key

How does Alice obtain Bob's PK?

Certificates bind Bob's ID to his PK

Outline

I. Network Security Recap

TLS Handshake vI

• Goal: Establish common session keys

Replay attack can happen!

TLS Handshake v2 Adding randomness protects against replay attack

• Goal: Establish common session keys

What if SKs gets compromised?

What if Bob's SK got lost or compromised?

- Bob's certificate has to be revoked
- Bob regenerates (PK, SK) pair and get a new certificate from CA

If an attacker has recorded past message exchange, he can encrypt with the compromised private key!

Key exchange should provide forward secrecy

Future compromise of secret key should NOT affect past sessions

- Need a separate session key other than the private key
- Computationally less burdensome

TLS Handshake with forward secrecy

• Goal: Establish common session keys

RSA Key Gen is Slow. Can we do better?

TLS Handshake via Diffie Hellman

• Goal: Symmetric key exchange

Outline

- I. Network Security Recap
- 2. TLS handshake
- 3. The full story of Tor Circuit

TLS connections are pre-established among Tor nodes

TLS connection first needs to be established between Alice and Guard

ANY messages exchanged between each connection is encrypted using the set of session keys (connection key in Tor)

With TLS tunnel already established Alice starts the steps to build the Tor circuit

Tor Circuit Construction: Ist hop

How Alice – Bob establish shared session key K₁

With TLS tunnel already established Alice starts the steps to build the Tor circuit

Tor Circuit Construction: 2nd hop

How Alice – Charlie establish shared session key K₂

With TLS tunnel already established Alice starts the steps to build the Tor circuit

Tor Circuit Construction: 3rd hop

• How Alice – Dave establish shared session key K₃

ALL Tor messages are exchanged inside TLS tunnels

This makes it hard to distinguish Tor traffic from normal TLS traffic

Tor Packet Forwarding via 3 hop Circuit

• Alice – Bob, Alice – Charlie, Alice – Dave has shared session key K₁, K₂ and K₃

When selecting relays what should Alice consider?

Alice (Client) \rightarrow Bob (Entry) \rightarrow Charlie (Middle) \rightarrow Dave (Exit) \rightarrow Server

Diversify the relays as much as possible! Why?

Top Countries where Tor relays are located

- The US
- Germany
- France
- Russia
- Netherlands
- United Kingdom

Outline

- I. Network Security Recap
- 2. TLS handshake
- 3. The full story of Tor Circuit
- 4. Tor Onion Service (aka hidden service)

Motivation: Now that we have secured Alice (identity, IP, location) is not known to server

Can we hide the IP and location of the server from Alice?

Tor Onion Service (aka Hidden Service)

🕖 🔒 https://www.bbc.com/news/technology-50150981

Onion service provides server anonymity by concealing server IP and location

Alice (client) shouldn't know where onion service (server) is

From server's point of view Alice should also remain anonymous

How to achieve both client-side and server-side anonymity?

A middleman between Alice and onion service is needed: Tor calls it a Rendezvous Point (RP)

They DON'T! RP should never learn anything regarding both Alice or server

3 hop is required for anonymity for both Alice and Server

How about 5 hop topology?

RP is exactly 3 hop away from both Alice and Server

How about 7 hop topology?

RP should be at least 3 hops away from both client and server without any overlap to support bi-directional anonymity

How to agree on RP without exposing oneself?

Step I: Server picks random 3 relays as its introduction points(IP) and builds circuits to them

Step 2: Server advertises its onion address, PK, and IPs to lookup service

Step 3: Client retrieves the PK, and IPs for the server Also client builds circuit to a randomly chosen RP

Step 4: Client sends introduce message to server via IP

Step 5: Server sends rendezvous message to RP

Step 6: Client and server proceeds to use Tor circuits like normal

How about 5 hop topology?

If RP is compromised, then both circuits are impacted

7 hop works but unnecessary as RP is simply forwarding

No added value in terms of security but only causes longer delay

Outline

- I. Network Security Recap
- 2. TLS handshake
- 3. The full story of Tor Circuit
- 4. Tor Onion Service (aka hidden service)
- 5. When Tor hidden service is not really hidden

Fingerprinting Attacks

Circuit Fingerprinting Attack: Passive Deanonymization of Tor Hidden Service (<u>USENIX Sec'15</u>)

Circuits for onion service has unique characteristics

Circuits for onion service has unique characteristics

- HS-IP circuits are long-lived while Client-IP circuits are short-lived
- IP's have little incoming and outgoing cells
- HS-RP circuits have more outgoing than incoming
- Streams for different .onion domains are not multiplexed
- IP and RP circuits are disjoint from general circuits

Use these characteristics to identify onion service circuits and locate the server!

Summary of Tor

- Tor enables anonymous communication over the Internet
- Tor uses 3 hop encrypted circuit to provide anonymity
- Tor Onion service aims to achieve both client-server server-client anonymity by hiding server IP/location
- Tor is vulnerable to various attacks and censorship attempts
- Tor is a constantly evolving network protocol to resists them

Backup slides

Tor: TLS Handshake (vI)

- Goal: Authenticate and establish TLS connection with shared session keys
- Any problems here?

TOR: TLS Handshake

- First, establish TLS connection (looks like regular TLS handshake traffic)
- Then, do authentication "in-protocol" using Tor cells

ToR:TLS Handshake

• Step 2: Authenticate Server using TOR cells

Client (OP/OR)	VERSIONS cell: "v3?"	Server (OR)
	VERSIONS cell: v3 agreed!	RSA Keypairs (PKcid, SKcid)
Authenticate	CERTS cell: Cert _{link} , Cert _{sid} "I am PK _{id} holding Sk _{id} and I am the one you've been talking to on this link"	(PK _{con} , SK _{con})
Server based on Cert _{link} and Cert _{id}	AUTH_CHALLENGE cell: "To prove who you say you are and you are the one I've been talking with on this link, solve this"	
	NETINFO: timestamp, IP address	

• Step 3: Client authentication (optional) and client network info shared

