
1

Lecture 03-03:
Application Layer – HTTP

CS 326E Elements of Networking
Mikyung Han

mhan@cs.utexas.edu

2
2

Link

Network

Transport

Application

Physical802.3 PHY

Ethernet, WiFi

IP

TCP, UDP

FTP, HTTP, SMTP

Internet
Reference Model

bit-by-bit or symbol-by-symbol delivery

data transfer between physically adjacent nodes

host to host data transfer across different network

process to process data transfer

application specific needs

Example Protocols Responsible for

3

Outline

1. Web and HTTP recap

4

Web and HTTP recap

A quick review…
§ What does a web page consist of?
o object can be HTML, JPEG, Java applet, audio,…
o Should all objects be stored in the same Web server

§ Each object is addressable by what?

www.someschool.edu/someDept/pic.gif

host name path name

5

HTTP is a _________ protocol

§ Server or client does not track “state” of each other
§ Each request/response pair is independent of each other
§No past requests affect the current request
§No need for client/server to recover from a partially-completed

transaction

Enables server to handle massive client requests!

6

If HTTP is stateless,
how come web servers remembers me?

7

Name 4 places to find cookie

8

HTTP uses _____ as underlying transport

You have an html page that references 3 objects
§ How many TCP connections are used with HTTP 1.0?

§ Is HTTP 1.0 persistent or non-persistent?

§How about HTTP 1.1?

9

Non-persistent HTTP
takes 2 RTT + object transmission time per object!

RTT (definition): Round trip time
between client and server

HTTP response time (per object):
§ one RTT to initiate TCP connection
§ one RTT for HTTP request and first few

bytes of HTTP response to return
§ object/file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

This was HTTP 1.0

10

Outline

1. Web and HTTP
2. HTTP 2.0
3. Web Cookies
4. Web Cache
5. Making web even faster

11

Goal: Reduce delay in multi-object HTTP requests

HTTP1.1 is first-come-first-served
§ Server responds in-order to GET requests

Why this is BAD?

12

HTTP/1.1 suffers from HOL blocking
client requests 1 large object (e.g., video file) and 3 smaller objects

client

server

GET O1GET O2GET O3GET O4

O1
O2

O3O4

object data requested

O1

O2
O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1

13

HTTP/2 mitigates HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1GET O2GET O3GET O4

O2
O4

object data requested

O1

O2
O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

14

HTTP/2 aims to further reduce the delay by
increasing flexibility in server when sending objects

[RFC 7540, 2015]

§ divide objects into frames, schedule frames to mitigate HOL blocking

§ transmission order of requested objects based on client-specified
object priority (not necessarily FCFS)

§ server push: pre-sends yet-to-be requested objects to client
§ Parses tags such as link script img source audio video track,etc.

15

HTTP/3 adds per-object error,
congestion control, and security over UDP

§ Short comings of HTTP/2
- Recovery from a packet loss still stalls all object transmissions
- No security over vanilla TCP connection

More on HTTP/3 in Ch 3 transport layer!

16

Outline

1. Web and HTTP recap
2. HTTP 2.0
3. Making web even faster: Web caching

17

Original server – slow or even not available

Motivation: How to make HTTP request even faster?

18

Web caches serves client requests quickly
without involving origin server

§ user configures browser to
point to a (local) Web cache

§ browser sends all HTTP
requests to cache
• if object in cache: cache

returns object to client
• else cache requests object

from origin server, caches
received object, then
returns object to client

client

Web
cache

client

HTTP request

HTTP res
ponse

HTTP request HTTP request

origin
server

HTTP response HTTP response

19

Web caches (aka proxy servers)

§ Web cache acts as both
client and server
• server for original

requesting client
• client to origin server

Why Web caching?
§ reduce response time for client

request
• cache is closer to client

§ reduce traffic on an institution’s
access link

§ Internet is dense with caches
• enables “poor” content providers

to more effectively deliver content

§ server tells cache about
object’s allowable caching in
response header:

20

Caching example

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access linkPerformance:

§ access link utilization = .97
§ LAN utilization: .0015
§ end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2

sec
§ web object size: 100K bits
§ avg request rate from browsers to origin

servers: 15 obj/sec
§ avg data rate to browsers: 1.50 Mbps

problem: large
queueing delays at
high utilization!

21

Performance:
§ access link utilization = .97
§ LAN utilization: .0015
§ end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Option 1: buy a faster access link

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2

sec
§ web object size: 100K bits
§ average request rate from browsers to origin

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)

22

Performance: ?

Option 2: install a web cache

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2

sec
§ web object size: 100K bits
§ avg request rate from browsers to origin

servers: 15 obj/sec
§ avg data rate to browsers: 1.50 Mbps

Cost: web cache (cheap!)

local web cache

How to compute link utilization and delay?

23

Access link utilization, end-end delay with cache:

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

local web cache

suppose cache hit rate is 0.4:
§ 40% requests served by cache, with low

(msec) delay
§ 60% requests satisfied at origin
• rate to browsers over access link

= 0.6 * 1.50 Mbps = .9 Mbps
• access link utilization = 0.9/1.54 = .58

means low (10 msec) queueing delay at access link
§ average end-end delay:

= 0.6 * (delay from origin servers)
+ 0.4 * (delay when satisfied at cache)

= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

lower average end-end delay than with 154 Mbps link (and cheaper too!)

24

What if objects in cache gets stale?

HTTP cache has a way to check if objects are up-to-date

25

HTTP/1.1 Conditional GET[RFC 7232]

Server does NOT send object if
cache has up-to-date cached version
• no object transmission delay (or use

of network resources)

§ cache: specify date of cached copy
in HTTP request
If-modified-since: <date>

§ server: response contains no
object if cached copy is up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.1

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.1 200 OK

<data>

object
modified

after
<date>

cache server

26

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

