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Outline

1. Why Transport Layer?
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Transport layer is responsible for delivering packets 
to the right application process

§Application processes are running 
on different hosts
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§ Packets in transport layer are called 
segments

§TCP or UDP
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§ demultiplexes message up 
to application via socket
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Outline

1. Why Transport Layer?
2. UDP vs TCP
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UDP?
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TCP vs UDP Features
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§TCP: Transmission Control Protocol
• reliable, in-order delivery
• congestion control 
• flow control
• Connection-setup

§UDP: User Datagram Protocol
• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

§Both has NO guarantee 
on delay or bandwidth
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When would you prefer UDP over TCP?
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Another difference is 
TCP is connection-oriented while UDP is connection less!

What do we mean by “connection”?
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What is connection here?

• BTW, this is different from Internet connectivity
• "Oh I don’t have WiFi connection”
• This is NOT what we are talking about

• It is a short form of “connection-establishment”



13

Analogy: Chocolate Handing Out Protocol (CHOP)

CHOP 1

o Whoever stops by to your station, 
you hand out the pre-packaged 
chocolate no matter what

CHOP 2

o Before you handout chocolate, you ask
o How many they want
o What kind they want
o What time they want
o Their names and contact 

o After the agreement, you then hand out 
the chocolate accordingly

Purpose is to hand out chocolates to people 

“Connection” in this context means 
establishing agreement prior to actual data exchange
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We say the protocol is connection-oriented

• There exists “establishment phase” prior to actual data exchange
o Aka hand-shake

• Applies to all layers, not just transport layer
• Connection establishment and data exchange can happen over 

the same “channel”
o Such as same TCP connection

• Sometime connection establishment can be done over a different mean
o Connection establishment is done in “control channel” 
o Data exchange can be done separately in “data channel”
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Recap: we say the protocol is stateful

• The protocol saves any state regarding the other party
o At least one side (server side) saves state regarding the other (receiver) side
o Or both side save info regarding the other side

UDP is stateless and TCP is stateful
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There exists some correlation btw
being stateful and connection-oriented
• Bottom line is “how much do I care about the other party”?

o Anything beyond the src address/port?
• Do I need to do something differently based on whom I am talking with?

o Send more/less traffic
o Send particular packets

• Establishing how to differ would be connection-oriented part
• Saving that info would be the stateful part 

Can connection-oriented protocol be stateless?
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In order to be stateless but still connection-oriented…
where to save the ”states” related to connection? 

• Where do we normally save these states at? 
o Inside server machine (or client machine as well)

• Where else besides server or client to “record” states?
o Not using any space inside the server or the client

Without anyone saving the states at host, 
each party can specify the agreement in the packet header!
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Connection-oriented stateless protocol example

• Both server and client agrees to use WiFi channel # 1 to communicate
o WiFi Channels

• Server and client exchanges data without saving any other info 
but just specify Ch 1 info in the packet header

https://en.wikipedia.org/wiki/List_of_WLAN_channels
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More questions

• Can connection-oriented protocol be stateless? 
o The same as “can stateless protocol be connection-oriented?” 

• Can connection-less protocol be stateful?
o The same as “can stateful protocol be connection less?”
o Can we save states without initial handshake? 
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UDP is connection-less stateless protocol

• UDP doesn’t really care who it is talking with
o Extracts {Src IP, Src Port} from the header to know whom it should reply to

• No need to establish custom “channel” for the communication
• UDP does not maintain any states of who they are

o The application layer may care and may maintain states there
• Same socket are shared to receive messages from multiple clients
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UDP demultiplexing
DatagramSocket serverSocket = new 

DatagramSocket
(6428);
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DatagramSocket mySocket1 = new 
DatagramSocket (5775);

DatagramSocket mySocket2 = new 
DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?
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TCP is connection-oriented stateful protocol

• TCP cares about with whom it’s talking
• Pre-establishes agreement for data exchange:  TCP hand-shake
• States are maintained per connection

o ACK, sequence number
• The connection is identified by 4 tuple

o Each src(IP:port) – dst(IP:port) pair is a “connection”
• Typically, a separate socket is used for each client unlike UDP
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TCP uses a separate socket for each client

• Each client has different IP:port
• Server has one listening socket that all new client requests comes in

o [listening socket] Well-known IPs:ports

• Once handshake completes
server communicates with a separate connection socket per client
o [connection socket 1] IPs:ports – IPc1:portc1
o [connection socket 2] IPs :ports – IPc2:portc2
o [connection socket 3] IPs :ports – IPc3:portc3

TCP socket is identified by 4 tuples!
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TCP demultiplexing
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host: IP 
address A

host: IP 
address C

network

P4

source IP,port: A,9157
dest IP, port: B,123

source IP,port: B,123
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,456

source IP,port: C,9157
dest IP,port: B,789

server: IP 
address B

Three segments, all destined to IP address: B
are demultiplexed to different sockets
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TCP header vs UDP header
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Outline

1. Why Transport Layer?
2. TCP vs UDP
3. Project 1
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DNS is is connection-less stateless protocol

• DNS doesn’t really care who is asking the question
o Yes, the receiving end does take a look at IP:port of the source and 

replies back to that IP:port but that’s about it
• DNS does not maintain any states of who the clients are
• No need to establish custom “channel” for the communication in the 

application layer
o Also, no connection establishment in transport layer as well (UDP)

• Each DNS query is completely independent


