
1

Lesson 05-01:
Transport Layer Intro

CS 356 Computer Networks
Mikyung Han

mhan@cs.utexas.edu

2
2

Link

Network

Transport

Application

Physical802.3 PHY

Ethernet, WiFi

IP

TCP, UDP

FTP, HTTP, SMTP

Internet
Reference Model

bit-by-bit or symbol-by-symbol delivery

data transfer between physically adjacent nodes

host to host data transfer across different network

process to process data transfer

application specific needs

Example Protocols Responsible for

3

Outline

1. Why Transport Layer?

4

Transport layer is responsible for delivering packets
to the right application process

§Application processes are running
on different hosts

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

§ Packets in transport layer are called
segments

§TCP or UDP

5

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

Sender:
app. msg§ is passed an application-

layer message
§ determines segment

header fields values
§ creates segment
§ passes segment to IP

transport
ThTh app. msg

6

physical

link

network (IP)

application

physical

link

network (IP)

application

transport

Transport Layer Actions

transport

Receiver:

app. msg § extracts application-layer
message

§ checks header values
§ receives segment from IP

Th app. msg

§ demultiplexes message up
to application via socket

7

Outline

1. Why Transport Layer?
2. UDP vs TCP

8

UDP?

9

TCP vs UDP Features

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport
§TCP: Transmission Control Protocol
• reliable, in-order delivery
• congestion control
• flow control
• Connection-setup

§UDP: User Datagram Protocol
• unreliable, unordered delivery
• no-frills extension of “best-effort” IP

§Both has NO guarantee
on delay or bandwidth

10

When would you prefer UDP over TCP?

11

Another difference is
TCP is connection-oriented while UDP is connection less!

What do we mean by “connection”?

12

What is connection here?

• BTW, this is different from Internet connectivity
• "Oh I don’t have WiFi connection”
• This is NOT what we are talking about

• It is a short form of “connection-establishment”

13

Analogy: Chocolate Handing Out Protocol (CHOP)

CHOP 1

o Whoever stops by to your station,
you hand out the pre-packaged
chocolate no matter what

CHOP 2

o Before you handout chocolate, you ask
o How many they want
o What kind they want
o What time they want
o Their names and contact

o After the agreement, you then hand out
the chocolate accordingly

Purpose is to hand out chocolates to people

“Connection” in this context means
establishing agreement prior to actual data exchange

14

We say the protocol is connection-oriented

• There exists “establishment phase” prior to actual data exchange
o Aka hand-shake

• Applies to all layers, not just transport layer
• Connection establishment and data exchange can happen over

the same “channel”
o Such as same TCP connection

• Sometime connection establishment can be done over a different mean
o Connection establishment is done in “control channel”
o Data exchange can be done separately in “data channel”

15

Recap: we say the protocol is stateful

• The protocol saves any state regarding the other party
o At least one side (server side) saves state regarding the other (receiver) side
o Or both side save info regarding the other side

UDP is stateless and TCP is stateful

16

There exists some correlation btw
being stateful and connection-oriented
• Bottom line is “how much do I care about the other party”?

o Anything beyond the src address/port?
• Do I need to do something differently based on whom I am talking with?

o Send more/less traffic
o Send particular packets

• Establishing how to differ would be connection-oriented part
• Saving that info would be the stateful part

Can connection-oriented protocol be stateless?

17

In order to be stateless but still connection-oriented…
where to save the ”states” related to connection?

• Where do we normally save these states at?
o Inside server machine (or client machine as well)

• Where else besides server or client to “record” states?
o Not using any space inside the server or the client

Without anyone saving the states at host,
each party can specify the agreement in the packet header!

18

Connection-oriented stateless protocol example

• Both server and client agrees to use WiFi channel # 1 to communicate
o WiFi Channels

• Server and client exchanges data without saving any other info
but just specify Ch 1 info in the packet header

https://en.wikipedia.org/wiki/List_of_WLAN_channels

19

More questions

• Can connection-oriented protocol be stateless?
o The same as “can stateless protocol be connection-oriented?”

• Can connection-less protocol be stateful?
o The same as “can stateful protocol be connection less?”
o Can we save states without initial handshake?

20

UDP is connection-less stateless protocol

• UDP doesn’t really care who it is talking with
o Extracts {Src IP, Src Port} from the header to know whom it should reply to

• No need to establish custom “channel” for the communication
• UDP does not maintain any states of who they are

o The application layer may care and may maintain states there
• Same socket are shared to receive messages from multiple clients

21

UDP demultiplexing
DatagramSocket serverSocket = new

DatagramSocket
(6428);

transport

application

physical

link

network

P2
transport

application

physical

link

network

P1

transport

application

physical

link

network

P3

DatagramSocket mySocket1 = new
DatagramSocket (5775);

DatagramSocket mySocket2 = new
DatagramSocket
(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

22

TCP is connection-oriented stateful protocol

• TCP cares about with whom it’s talking
• Pre-establishes agreement for data exchange: TCP hand-shake
• States are maintained per connection

o ACK, sequence number
• The connection is identified by 4 tuple

o Each src(IP:port) – dst(IP:port) pair is a “connection”
• Typically, a separate socket is used for each client unlike UDP

23

TCP uses a separate socket for each client

• Each client has different IP:port
• Server has one listening socket that all new client requests comes in

o [listening socket] Well-known IPs:ports

• Once handshake completes
server communicates with a separate connection socket per client
o [connection socket 1] IPs:ports – IPc1:portc1
o [connection socket 2] IPs :ports – IPc2:portc2
o [connection socket 3] IPs :ports – IPc3:portc3

TCP socket is identified by 4 tuples!

24

TCP demultiplexing

transport

application

physical

link

network

P2
transport

application

physical

link

P1

transport

application

physical

link

network

P3

host: IP
address A

host: IP
address C

network

P4

source IP,port: A,9157
dest IP, port: B,123

source IP,port: B,123
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,456

source IP,port: C,9157
dest IP,port: B,789

server: IP
address B

Three segments, all destined to IP address: B
are demultiplexed to different sockets

25

TCP header vs UDP header

26

Outline

1. Why Transport Layer?
2. TCP vs UDP
3. Project 1

27

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

28

DNS is is connection-less stateless protocol

• DNS doesn’t really care who is asking the question
o Yes, the receiving end does take a look at IP:port of the source and

replies back to that IP:port but that’s about it
• DNS does not maintain any states of who the clients are
• No need to establish custom “channel” for the communication in the

application layer
o Also, no connection establishment in transport layer as well (UDP)

• Each DNS query is completely independent

