Lesson 06-07;
SDN and ICMP

CS 356 Computer Networks
Mikyung Han

mhan@cs.utexas.edu

Example Protocols

FTP, HTTP, SMTP

TCP, UDP

Ethernet, WiFi

802.3 PHY

Application

Transport

Responsible for Internet
Reference Model

application specific needs

process to process data transfer

host to host data transfer across different network

data transfer between physically adjacent nodes

bit-by-bit or symbol-by-symbol delivery

Outline

I 1. Why SDN?

Motivation:
What is difficult/impossible in traditional routing?

Traditional per-router control plane

each router computes its own forwarding table after exchanging
control plane info with other routers

>

Routing / R

Algorithm -

"ﬁ\ control
L \ ‘ plane

Local forwarding
table

header output

0100 3
0110
0111
1001

values in arriving

packet header ;

data
plane

- NN

Traditional routing:
Not easy to specify a preferred path

Q: what if network operator wants u-to-z traffic to flow along
uvwz, rather than uxyz!

A: need to re-define link weights so traffic routing algorithm
computes routes accordingly (or need a new routing algorithm)!

link weights are only control “knobs”: not much control!

Traditional routing:
Impossible to split traffic evenly

Q: what if network operator wants to split u-to-z traffic
along uvwz and uxyz (load balancing)?
A:can’t do it (or need a new routing algorithm)

Traditional routing:
Impossible to use different routes for different flows

Q: what if w wants to route blue and red traffic differently from w to z!

A: can’t do it (with destination-based forwarding)

GF can be used to achieve any routing desired!

SDN uses a logically centralized control plane

e Remote Controller <
|

values in arriving
packet header

control
plane

data
plane

Remote controller computes and installs

forwarding tables to each router

Why logically centralized control plane?

* Easier management
o Less router misconfigurations
o Greater flexibility of traffic flows

* Allows “programmable” network

* Unbundling allowed rich innovation

o Functionality/implementations divided into 3 entities

 SDN-controlled switches
 SDN controller
* Network-control applications

o No longer "monolithic” or “vertically integrated” into a single router/switch

Outline

@ 2. SDN architecture

SDN architecture
sccess foad 3. control plane functions
4 programmable ——— o 7 external to data-plane

network-control

aPP|Icatl0nS ., Remote Controller <

switches

plane

2. control, data plane
separation

|: generalized “flow-based” [
forwarding (e.g., OpenFlow)

#| Data-plane switches

= fast, simple, commodity switches
implementing GF in hardware

* flow table computed, installed under
controller supervision

= Communicates with SDN controller
via protocol like OpenFlow

<>
=
——

SDN-controlled switches

|

data
plane

l

#2 SDN Controller (aka Network OS)

" maintains network state information

= interacts with both network
switches “below’ and network

control applications “above” o
northbound API plane

= implemented as distributed system
for performance, scalability, SDN Controller
(network operating system)
fault-tolerance, robustness E

southbound API v

#3 Network-control applications

iy . ’s network-control applications
= “brains” of control: implement t
control functions depending
access load
on current network status control / \ balance

* New routing algo, policy, etc... control

northbound API plane

= unbundled: can be provided by

3rd party: distinct from routing
vendor, or SDN controller

southbound API l

Zooming into #2 SDN controller: 3 layers

interface layer to network
control apps: abstractions API

network-wide state

management : state of networks
links, switches, services in a

communication: communicate NV I

between SDN controller and
controlled switches

SDN
controller

OpenFlow protocol

= Operates between controller and switch
= TCP used to exchange messages

= 3 classes of OpenFlow messages:
* controller-to-switch
* switch-to-controller
* symmetric (misc.)

= OpenFlow API can specify GF actions

OpenFlow Controller

i e OpenFlow

SDN: control/data plane interaction example

Dijkstra’s link-state

routing (D SI, experiencing link failure uses
"""" 7 N OpenFlow port status message to
network RESTful : I
o J ST J cent J notify controller

(2 SDN controller receives OpenFlow
message, updates link status info

statistics

flow tablesJ

Link-state {nfo

host info J switch info J

(3 Dijkstra’s routing algorithm
application has previously registered
to be called when ever link status
changes. It is called.

(@ Dijkstra’s routing algorithm
access network graph info, link
state info in controller, computes
new routes

SDN: control/data plane interaction example

Dijkstra’s link-state
routing

"""" 7y M () E—
network RESTful : . . .
graph AP J intent J (® link state routing app interacts
with flow-table-computation

statistics e t"‘b'e-"J component in SDN controller,
. J . J which computes new flow tables
host info switch info
needed

(® controller uses OpenFlow to
install new tables in switches
that need updating

Outline

3. ICMP

20

ICMP is used by network devices
to diagnose network communication issues

Mainly to figure out
= |s destination network reachable?

= |s destination host reachable!?

" |s destination port reachable!?

21

ICMP is considered network layer protocol

But
= [CMP is implemented in one layer above network layer

* [CMP messages are carried by |IP datagram as part of IP payload

= |[CMP helps diagnosing network layer

ping

Src sends ICMP echo request every n seconds

Dst replies with I[CMP echo reply

=Y

PING cnn.

64
64
64
64
64
64
64
64
64
64
64
64
64
64
64
AG

~ ping cnn.com
com (151

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

151.
1561.
151..
151.
1561.
151.
161.
151.
151..
151.
1561.
151.
161 .
151.
151..

.101

101.
101.
101.
101.
101.
101.
101.
101.
101..
101.
101.
101.
101.
101.
101.

.65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.
65.

67): 56 data bytes

(¥ -

67:
67:
67:
67:
67:
67:
67:
67:
67:
67:
67:
67:
67:
67:

——— cnn.com ping statistics
15 packets transmitted, 15 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 4.875/9.153/14.593/3.327 ms

-

ro

icmp_seq=90
icmp_seqg=1
icmp_seq=2
icmp_seq=3
icmp_seq=4
icmp_seqg=5
icmp_seq=6
icmp_seq=7
icmp_seq=8
icmp_seq=9
icmp_seq=10
icmp_seqg=11
icmp_seq=12
icmp_seq=13
icmp_seq=14

ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57
ttl=57

time=4.958 ms
time=4.875 ms
time=4.956 ms
time=11.490 ms
time=11.315 ms
time=5.640 ms
time=11.444 ms
time=12.050 ms
time=14.593 ms
time=11.237 ms
time=5.606 ms
time=5.181 ms
time=11.252 ms
time=11.359 ms
time=11.343 ms

23

Traceroute shows each hop from src to dst

bash-3.2$ traceroute google.com
traceroute to google.com (172.217.2.78), 64 hops max, 52 byte packets
192.168.0.1 (192.168.0.1) 2.631 ms 1.567 ms 1.447 ms

¢) 9.216 ms 10.121 ms 9.376 ms
3e-102-rur@1.royalton. tx.houston.comcast.net (68.85.251.73) 9.079 ms 10.277 ms 9.075 ms
ae-29-ar01.bearcreek. tx.houston.comcast.net (68.85.245.85) 10.808 ms 9.548 ms 9.912 ms
be-33662-cr02.dallas.tx.ibone.comcast.net (68.86.92.61) 16.730 ms 17.720 ms 19.477 ms
be-12441-pe@1.1950stemmons. tx.ibone.comcast.net (68.86.89.206) 15.974 ms 15.445 ms 15.603 ms
75.149.231.222 (75.149.231.222) 15.273 ms 16.433 ms 15.261 ms
* % %

= src sends out UDP segments with
unlikely port number

VO~NANHWNE

t . t St 72.14.238.56 (72.14.238.56) 18.218 ms
° 108.170.233.117 (108.170.233.117) 30.536 ms
o Segment | has TTL of |: expires at |5t hop [EEECEEATEEAIEE
216.239.59.149 (216.239.59.149) 43.450 ms 44.723 ms
. (j 108.170.240.209 (108.170.240.209) 15.624 ms
° 108.170.231.85 (108.170.231.85) 55.598 ms
O Segment 2 has TTL of 2: expires at n hop e E Uy e
108.170.231.105 (108.170.231.105) 43.822 ms
216.239.59.149 (216.239.59.149) 43.827 ms
. 108.170.230.225 (108.170.230.225) 43.259 ms
108.170.232.115 (108.170.232.115) 45.322 ms
o . rd
216.239.46.212 (216.239.46.212) 44.314 ms
108.170.231.85 (108.170.231.85) 43.894 ms 42.910 ms
108.170.253.17 (108.170.253.17) 43.966 ms

C) 108.170.253.1 (108.170.253.1) 45.254 ms
e o mia09s01-in-f14.1e100.net (172.217.2.78) 43.940 ms

= router at which TTL expires sends back TTL expired (ICMP warning) to back
to src

= dst with no such UDP port open sends dst port unreachable (ICMP warning)
back to src

How does src know when to stop sending segment!?

24

Backup slides

25

Acknowledgements

Slides are adopted from Kurose’ Computer Networking Slides

26

