
Structured Wide-Area Programming:
Orc Programming Examples

Jayadev Misra

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

Some Algorithms

• Enumeration and Backtracking

• Using Closures

• List Fold, Map-reduce

• Parsing using Recursive Descent

• Exception Handling

• Process Network

• Quicksort

• Graph Algorithms: Depth-first search, Shortest Path

Enumeration

Given: integern, list of integersxs
Return all subsequences ofxs that sum ton.

sum(5,[1,2,1,2]) = [1,2,2], [2,1,2]
sum(5,[1,2,1]) is silent

def sum(0, []) = []

def sum(_, []) = stop

def sum(n, x : xs) =
sum(n − x, xs) >ys> x : ys

| sum(n, xs)

Backtracking: Use of Otherwise

Given: integern, list of integersxs
Return the “first” subsequence ofxs that sums ton.

sum(5,[1,2,1,2]) = [1,2,2]
sum(5,[1,2,1]) is silent

def sum(0, _) = []

def sum(_, []) = stop

def sum(n, x : xs) = x : sum(n − x, xs) ; sum(n, xs)

Backtracking: Eight queens

Place 8 queens on a chessboard so that no queen captures another.

... ...
Row 1

Row 2

Row 3
x

0 ...

x x

1

x

0 0 0

1

1 7 7

7

7

x
...

...
x x

10

1 7

Figure:Backtrack Search for Eight queens

Eight queens; contd.

• xs: partial placement of queens (list of values from0..7)

• extend(xs) publishesall solutions that are extensions ofxs.

• open(xs) publishes the columns that areopenin the next row.

• Solve the original problem by callingextend([]).

def extend(xs) =
if (length(xs) = 8) then xs
else (open(xs) >j> extend(j : xs))

Using Closure

A UNITY Program

x, y = 0, 0

x < y → x := x + 1
| y := y + 1

• Program has: variable declarations
a set of functions

• Variables are initialized as given.

• Program is run by: choosing a function arbitrarily,
choosing functions fairly.

Corresponding Orc program

val (x, y) = (Ref (0), Ref (0))

def f 1() = Ift(x? <: y?) ≫ x := x? + 1
def f 2() = y := y? + 1

Run the program by:

• choosing a function arbitrarily,

• choosing functions fairly.

Scheduling the UNITY Program

def unity(fs) =
val arlen = length(fs)
val fnarray = Array(arlen)

{- populate() transfers from listfs to array fnarray -}
def populate(_, []) = signal
def populate(i, g : gs) = fnarray(i) := g ≫ populate(i + 1, gs)

{- Execute a random statement and loop.
Randomness guarantees fairness.-}
def exec() = random(arlen) >j> fnarray(j)?() ≫ exec()

{- Initiate the work-}
populate(0, fs) ≫ exec()

Running the example program

val (x, y) = (Ref (0), Ref (0))

def f 1() = Ift(x? <: y?) ≫ x := x? + 1
def f 2() = y := y? + 1

unity([f 1, f 2])

Associative Fold

• Define afold(f , xs) where f is an associative binary function and
xs is a non-empty list.

• Goal is to combine elements in parallel.

• Each iteration reduces adjacent pairs of items to single values.

• Iterations continue until there is a single value.

Associative Fold; contd.

def afold(f , [x]) = x
def afold(f , xs) =

def step([]) = []
def step([x]) = [x]
def step(x : y : xs) = f (x, y) : step(xs)

afold(f , step(xs))

• f (x, y) : step(xs) is an implicit fork-join.

• f (x, y) executes concurrently withstep(xs).

• All calls to f execute concurrently within each iteration ofafold.

Associative and Commutative Fold
• Transfer list items to a channel (arbitrary order of items).
• Fold any two channel items and put the result in the channel.

def acfold(f , xs) =
val c = Channel()

def xfer([]) = stop
def xfer(x : xs) = (c.put(x), xfer(xs))

def combine(1) = c.get()

def combine(m) =
c.get() >x> c.get() >y>
(c.put(f (x, y)) ≫ stop | combine(m − 1))

xfer(xs) | combine(length(xs))

map-reduce

• Given is a list of tasks.

• A processor from a processor pool is assigned to process a task.
Each task may be processed independently, yielding a result.

• If a processor does not respond within timeT, a new processor
is assigned to the task.

• After all the results have been computed, the results are reduced
by calling reduce.

Implementation

• processlist processes a list of tasks concurrently.
process(t) processes a single taskt.
process(t) publishes a result;processlist a list of results.

• Function process first acquires a processor.
It assigns the task to the processor.
If the processor responds within timeT, it publishes the result.
Else, it repeats these steps.

• process(t) may never complete if the processors keep failing.

• The list of published results are reduced by functionreduce.

map-reduce

def processlist([]) = []
def processlist(t : ts) = process(t) : processlist(ts)

def process(t) =
val processor = Processorpool()
val (result, b) = (processor(t), true) | (Rwait(T), false)
if b then result else process(t)

processlist(tasks) >x> reduce(x)

Parsing using Recursive Descent

Consider the grammar:

expr ::= term | term + expr

term ::= factor | factor ∗ term

factor ::= literal | (expr)

literal ::= 3 | 5

Parsing strategy
For each non-terminal, sayexpr, define expr(xs):
publish all suffixes ofxs such that the prefix is aexpr.

def isexpr(xs) = expr(xs) >[]> true ; false

To avoid multiple publications (in ambiguous grammars),

def isexpr(xs) =
val res = expr(xs) >[]> true ; false
res

------------ Test

isexpr
([”(”, ”(”, ”3”, ” ∗ ”, ”3”, ”)”, ”)”, ” + ”, ”(”, ”3”, ” + ”, ”3”, ”)”])

— ((3*3))+(3+3)

:: true

Function for each non-terminal

Given: expr ::= term | term + expr
Rewrite: expr ::= term (ǫ | + expr)

def expr(xs) = term(xs) >ys> (ys | ys > ”+” : zs> expr(zs))

def term(xs) = factor(xs) >ys> (ys | ys > ”*” : zs> term(zs))

def factor(xs) = literal(xs)
| xs > ”(” : ys> expr(ys) > ”)” : zs> zs

def literal(n : xs) = n > ”3” > xs | n > ”5” > xs
def literal([]) = stop

Exception Handling

Client calls siteserver to request service.
The server “may” request authentication information.

def request(x) =
val exc = Channel() -- returns a channel site

server(x, exc)
| exc.get() >r> exc.put(auth(r)) ≫ stop

Process Networks

• A process network consists of: processes and channels.

• The processes run autonomously, and
communicate via the channels.

• A network is a process; thus hierarchical structure.
A network may be defined recursively.

• A channel may have intricate communication protocol.

• Network structure may be dynamic, by adding/deleting
processes/channels during its execution.

Channels

• For channelc, treat c.put and c.get as site calls.

• In our examples,c.get is blocking andc.put is non-blocking.

• We consider only FIFO channels.
Other kinds of channels can be programmed as sites.
We show rendezvous-based communication later.

Typical Iterative Process

Forever: Read x from channelc, compute withx, output result one:

def p(c, e) = c.get() >x> Compute(x) >y> e.put(y) ≫ p(c, e)

c e

p(c,e)

Compute

Figure:Iterative Process

Composing Processes into a Network

Process (network) to read from bothc and d and write one:

def net(c, d, e) = p(c, e) | p(d, e)

c

d

e

p(c,e)

p(d,e)

net(c,d,e)

Figure:Network of Iterative Processes

Workload Balancing
Read fromc, assign work randomly to one of the processes.

def bal(c, c′, d′) = c.get() >x> random(2) >t>
(if t = 0 then c′.put(x) else d′.put(x)) ≫

bal(c, c′, d′)

def workbal(c, e) = val c′ = Channel()
val d′ = Channel()
bal(c, c′, d′) | net(c′, d′, e)

c’

d’

e

p(c’,e)

c

p(d’,e)

 bal

workBal(c,e)

Deterministic Load Balancing

• Retain input order in the output.

• distr alternatively copies input toc’ andc” .
coll alternatively copies fromd’ andd” to output.

c’

c’’

p(c’,d’)

p(c’’,d’’)

d coll

d’

d’’

 distrc

Deterministic Load Balancing

def detbal(in, out) =
def distributor(c, c′ , c′′) =

c.get() >x> c′.put(x) ≫

c.get() >y> c′′.put(y) ≫

distributor(c, c′ , c′′)

def collector(d′ , d′′, d) =
d′.get() >x> d.put(x) ≫

d′′.get() >y> d.put(y) ≫

collector(d′ , d′′, d)

val (in′, in′′) = (Channel(), Channel())
val (out′, out′′) = (Channel(), Channel())

distributor(in, in′ , in′′) | collector(out′ , out′′, out)
| p(in′, out′) | p(in′′, out′′)

Deterministic Load Balancing with2n servers

Construct the network recursively.

c’

c’’

d coll

d’

d’’

 distrc

recBal(n−1,c’’,d’’)

c d

recBal(0,c,d)

p(c,d)

recBal(n−1,c’,d’)

recBal(n,c,d)

Recursive Load Balancing Network

def recbal(0, in, out) = P(in, out)

def recbal(n, in, out) =
def distributor(c, c′ , c′′) = · · ·

def collector(d′ , d′′, d) = · · ·

val (in′, in′′) = (Channel(), Channel())
val (out′, out′′) = (Channel(), Channel())

distributor(in, in′ , in′′) | collector(out′ , out′′, out)
| recbal(n − 1, in′, out′) | recbal(n − 1, in′′, out′′)

An Iterative Process: Transducer

Compute f (x) for each x in channel in and output toout, in order.

def transducer(in, out, fn) =
in.get() >x> out.put(fn(x)) ≫ transducer(in, out, fn)

Pipeline network

Apply function f to each input:f (x) = h(g(x)), for some g and h.

def pipe(in, out, g, h) =
val c = Channel()
transducer(in, c, g) | transducer(c, out, h)

g hin c out

Recursive Pipeline network
Consider computing factorial of each input.

fac(x) =

{

1 if x = 0
x × fac(x − 1) if x > 0

Supposex ≤ N, for some givenN.

Fac_(N−1)

in out

in’ out’

front

Fac_(N)

Outline of a program

def fac(N, in, out) =
val (in′, out′) = (Channel(), Channel())
front(in, out, in′ , out′) | fac(N − 1, in′, out′)

Fac_(N−1)

in out

in’ out’

front

Fac_(N)

Implementation ofFac0

• receive inputx, x = 0

• output 1

• loop.

def fac(0, in, out) =
in.get() ≫ out.put(1) ≫ fac(0, in, out)

Implementation offront
front has two subprocesses,readandwrite, doing forever:

• readreceives inputx from in.
• If x = 0, output x on b.
• If x > 0, output x on b, sendx − 1 on in′.

• write receives inputx from b:
• If x = 0, output 1.
• If x > 0, receivey from out′, send x × y on out

in outb
in’ out’

read write

Fac_(N−1)

Code of front

in outb
in’ out’

read write

Fac_(N−1)

def front() =
val b = Channel()
def read() = in.get() >x> b.put(x) ≫

if x :> 0 then in′.put(x − 1) else signal ≫ read()

def write() = b.get() >x>
if x = 0 then out.put(1)
else (out′.get() >y> out.put(x ∗ y)) ≫ write()

read() | write()

Program for fac

def fac(0, in, out) =
in.get() ≫ out.put(1) ≫ fac(0, in, out)

def fac(N, in, out) =
val (in′, out′) = (Channel(), Channel())

def front() = · · ·

front() | fac(N − 1, in′, out′)

Combining Server Farm and Pipeline

Fac_(N−1)

in’ out’

front

Fac_(N)

Fac_(N−1)

in’ out’

front

Fac_(N)

distr coll

Exercise: Combining Server Farm and Pipeline

• A dataset is a list of positive numbers.
The datasets are available on input channelin.
Each list length is no more thanN, for some givenN.

• Required: compute mean and variance of each dataset.
Output the results (as pairs) in order on channelout.

• First, divide the processing among about
√

N servers.

• Next, structure each server as a recursive pipeline.

Recursive Equations for Mean and Variance

• Use the equations:

sum([]) = 0,
sum(x : xs) = x + sum(xs)

length([]) = 0,
length(x : xs) = 1 + length(xs)

mean(xs) = sum(xs)/length(xs)

var([]) = 0,
var(xs) = mean(map(square, xs)) − mean(xs) ∗∗2

• Hint: For each list, compute the sum, sum of squares, and length
by a recursive pipeline.
Apply a function to compute mean and variance from these data.

Quicksort

• In situ permutation of an array.

• Array segments are simultaneously sorted.

• Partition of an array segment proceed from left and right
simultaneously.

• Combine Concurrency, Recursion, and Mutable Data Structures.

Traditional approaches

• Pure functional programs do not admit in-situ permutation.

• Imperative programs do not highlight concurrency.

• Typical concurrency constructs do not combine well with
recursion.

Scan over arraya; swap

• lr(i) returns the smallest indexj, i ≤ j ≤ t, where t is given,
such thata(i)? > p. Returns t + 1 if there is no such index.

• rl(i) returns the largest indexj, 0 ≤ j ≤ i, such thata(i)? ≤ p.
There is guranteed to be such an index.

• swap(a, b) swaps the contents of two refs, and returns a signal.

def lr(i) = if (i <: t && a(i)? <= p) then lr(i + 1) else i

def rl(i) = if (a(i)? :> p) then rl(i − 1) else i

def swap(a, b) = (a?, b?) >(x, y)> (a := y, b := x) ≫ signal

Partition

def part(p, s, t) = -- s and t are array boundaries
def lr(i) = if (i <: t && a(i)? <= p) then lr(i + 1) else i
def rl(i) = if (a(i)? :> p) then rl(i − 1) else i

val (s′, t′) = (lr(s), rl(t))

(Ift(s′ + 1 <: t′) ≫ swap(a(s′), a(t′)) ≫ part(p, s′ + 1, t′ − 1)

| Ift(s′ + 1 = t′) ≫ swap(a(s′), a(t′)) ≫ s′

| Ift(s′ + 1 :> t′) ≫ t′

)

Returnsm where

a(s) · · · a(m) ≤ p,
a(m + 1) · · · a(t) > p

Sorting

def sort(s, t) =

if s >= t then signal

else part(a(s)?, s + 1, t) >m>

swap(a(m), a(s)) ≫

(sort(s, m − 1), sort(m + 1, t)) ≫

signal

sort(0, a.length() − 1)

Putting the Pieces together
def quicksort(a) =

def swap(a, b) = (a?, b?) >(x, y)> (a := y, b := x) ≫ signal
def part(p, s, t) =

def lr(i) = if (i <: t && a(i)? <= p) then lr(i + 1) else i
def rl(i) = if (a(i)? :> p) then rl(i − 1) else i
val (s′, t′) = (lr(s), rl(t))
(Ift(s′ + 1 <: t′) ≫ swap(a(s′), a(t′)) ≫ part(p, s′ + 1, t′ − 1)
| Ift(s′ + 1 = t′) ≫ swap(a(s′), a(t′)) ≫ s′

| Ift(s′ + 1 :> t′) ≫ t′

)
def sort(s, t) =

if s >= t then signal
else part(a(s)?, s + 1, t) >m>

swap(a(m), a(s)) ≫

(sort(s, m − 1), sort(m + 1, t)) ≫

signal
sort(0, a.length() − 1)

Remarks and Proof outline

• Concurrency without locks

• sort(m, n) sorts the segment; does not touch items outside the
segment.

• Then, sort(s, m − 1) and sort(m + 1, t) are non-interfering.

• part(p, s, t) does not modify any value outside this segment.
May read values.

Depth-first search of undirected graph
Recursion over Mutable Structure

N: Number of nodes in the graph.

conn: conn(i) the list of neighbors ofi

parent: Mutable array of lengthN
parent(i) = v, v >= 0, meansv is the parent node ofi
parent(i) < 0 means parent ofi is yet to be determined

Once i has a parent, it continues to have that parent.

dfs(i, xs): starts a depth-first search from all nodes inxs in order,
i has a parent (ori = N),
xs ⊆ conn(i),
All nodes in conn(i) − xs have parents already.

Depth-first search

val N = 6 -- N is the number of nodes in the graph
val parent = Table(N, lambda(_) = Ref (−1))

def dfs(_, []) = signal

def dfs(i, x : xs) =
if (parent(x)? >= 0) then dfs(i, xs)
else parent(x) := i ≫ dfs(x, conn(x)) ≫ dfs(i, xs)

dfs(N, [0]) -- depth-first search from node 0

Shortest path problem

• Directed graph; non-negative weights on edges.

• Find shortest path from source to sink.

We calculate just the length of the shortest path.

Shortest Path Algorithm with Lights and Mirrors

• Source node sends rays of light to each neighbor.

• Edge weight is the time for the ray to traverse the edge.

• When a node receives its first ray, sends rays to all neighbors.
Ignores subsequent rays.

• Shortest path length= time for sink to receive its first ray.
Shortest path length to nodei = time for i to receive its first ray.

Graph structure in functionSucc()

u

x y z

2 1 5

Figure:Graph Structure

Succ(u) publishes(x, 2), (y, 1), (z, 5).

Recording the values

For nodeu, record its path length in channelu.

u is a bounded channel of length 1.

The first “put” blocks all other puts until the recorded valueis read
out.

Algorithm

def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

Algorithm(contd.)

def eval(u, t) = record valuet for u ≫

for every successorv with d = length of (u, v) :
wait for d time units ≫

eval(v, t + d)

Goal : eval(source, 0) |
read the value recorded for thesink

———————————-
def eval(u, t) = u.put(t) ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | sink.get()

Algorithm(contd.)

def eval(u, t) = u.put(t) ≫

Succ(u) >(v, d)>
Rwait(d) ≫

eval(v, t + d)

{- Goal :-} eval(source, 0) | sink.get()

• Any call to eval(u, t): Length of a path from source tou is t.

• First call to eval(u, t): Length of the shortest path from source to
u is t.

• eval does not publish.

Drawbacks of this algorithm

• Running time proportional to shortest path length.

• Executions ofSucc, put and get should take no time.

