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The rapid accumulation of microarray data translates into a

need for methods to effectively integrate data generated with

different platforms. Here we introduce an approach, 2nd-order

expression analysis, that addresses this challenge by first

extracting expression patterns as meta-information from each

data set (1st-order expression analysis) and then analyzing

them across multiple data sets. Using yeast as a model

system, we demonstrate two distinct advantages of our

approach: we can identify genes of the same function yet

without coexpression patterns and we can elucidate the

cooperativities between transcription factors for regulatory

network reconstruction by overcoming a key obstacle, namely

the quantification of activities of transcription factors.

Experiments reported in the literature and performed in our

lab support a significant number of our predictions.

Microarray gene expression profiling is now done in many laboratories,
resulting in the rapid accumulation of data in public repositories1,2.
Despite recent advances in analysis techniques, several important
challenges remain. (i) There is an urgent need for methods to effectively
integrate multiple microarray data sets. Gene expression values gener-
ated with different platforms (such as spotted cDNA or Affymetrix
high-density oligonucleotide arrays) are not directly comparable. Even
within the same technology, alternative experimental parameters result
in systematic variations among data sets often beyond the capability of
statistical normalization. (ii) There is a lack of algorithms that can
identify functionally related genes which do not have similar expression
patterns. Most methods for functional analysis of microarray data
make the implicit assumption that genes with similar expression
profiles have similar functions3,4. However, among genes involved in
the same pathway, many gene pairs do not show similar expression
profiles5. (iii) The reconstruction of transcriptional regulatory networks
remains the key challenge for microarray analysis. A major issue is the
measurement of transcription factor activities because changes in their
expression are often subtle and their activities are often controlled at
levels other than expression. This further leads to difficulties in the
elucidation of cooperativity between transcription factors. Recently,

several approaches have been proposed to address some of these
individual problems5–7, yet there remains a lack of unified frameworks
that can simultaneously respond to these challenges.

Here we introduce an approach termed 2nd-order expression
analysis, which we will show to be useful in overcoming the three
aforementioned problems. We define 1st-order expression analysis as
the extraction of expression patterns from one microarray data set,
which contains a set of expression profiles measured under relevant
conditions. We propose 2nd-order expression analysis as a study of the
correlated occurrences of those expression patterns across multiple
data sets measured under different types of conditions (e.g., starva-
tion, heat shock). By first extracting expression patterns as meta-
information from each data set and then analyzing them compara-
tively, the results are not affected by variations among data sets. This
allows integration of multiple microarray data sets in a platform-
independent manner. Here, we apply 2nd-order analysis to 618 yeast
expression profiles comprising 39 cDNA or Affymetrix array data sets
to group genes that have the same function but may not be
coexpressed, to annotate their functions, to quantify the activity
profiles of transcription factors and reconstruct regulatory networks.

We illustrate 2nd-order expression analysis with a simple case, the
analysis of expression patterns of coexpressed gene pairs. If a pair of
genes is tightly coexpressed in multiple data sets, the genes are likely to
be functionally linked. We term such gene pairs doublets. Our first
objective is to find pairs of such doublets that simultaneously exhibit
either high or low expression correlations across multiple data sets,
that is, simultaneously turn on or off their functional links over
different types of conditions. Such a set of four genes, termed a
quadruplet, is likely to be functionally related, even though the global
expression profiles of those genes do not exhibit gross similarities (see
an example in Fig. 1). We identify quadruplets using a two-step
procedure: (i) calculate the expression correlations of the doublet in
each of the data sets and store them in a vector, termed 1st-order
expression correlation profile; (ii) calculate the correlation between
two 1st-order profiles to generate the 2nd-order expression correlation,
and define those pairs of doublets with high 2nd-order correlations as
quadruplets. Throughout the paper, an expression correlation or a
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2nd-order correlation is considered high if it is greater than 0.6, a
statistically conservative cutoff value (see Supplementary Methods
online). Applying the approach to known yeast genes, we identified
5,142 doublets. Among the possible 13 million pairs of doublets, we
further identified 278,799 quadruplets, 84% of which contain func-
tionally homogeneous genes (P o 10�5 by Monte Carlo simulation).

Furthermore, we compared our method to standard microarray ana-
lysis methods8 by focusing only on cDNA array data sets. In contrast to
our two-step procedure, the standard method merges multiple cDNA
array data sets and calculates gene expression correlations across all
arrays. We found that 83% of the 268,828 quadruplets derived by our
method are functionally homogenous, and only 54% of the 4,186 co-
expressed gene pairs determined using the standard method are func-
tionally homogenous. To compare these results, we counted gene pairs
contained in the functionally homogenous quadruplets. Since each
quadruplet {a-b, c-d} yields 4 cross-doublet gene pairs: a-c, a-d, b-c
and b-d, altogether the quadruplets give rise to a set of 2,597 distinct
and novel gene pairs that are not contained in the set of doublets
derived using first-order analysis. Strikingly, 97% of the 2,597 pairs are
missed by the standard method. The 2nd-order expression analysis is
complementary because (i) for a quadruplet, the cross-doublet gene
pairs may be functionally related but may not show high expression
correlation; (ii) our method is sensitive to gene pairs which are only
coexpressed in a subset of the data sets, while the standard method is
limited to gene pairs which are globally coexpressed; and (iii) the
standard method is susceptible to variations between data sets, which
can bias the estimation of expression correlations in the merged data.

Having validated that the 2nd-order expression analysis can effec-
tively group functionally related genes, we generalize the method from
grouping two gene pairs to grouping k gene pairs for functional
annotation. This can be achieved by clustering doublets based on their
1st-order expression correlation profiles. Each cluster represents a
module of functional links following the same patterns of being
turned on or off across multiple data sets. Similar to the case of
quadruplets, functionally related genes with low 1st-order but high
2nd-order correlations can be clustered together. As an indication of
the power of 2nd-order correlation for functional clustering, using all
known doublets, we observed that 72 of the top 100 tightest clusters
are functionally homogeneous. We applied 2nd-order clustering to
functional annotation, and made a prediction for a doublet only if it is
in a tight cluster that includes at least three doublets and in which all
remaining doublets shared the same function. Among the 100 tightest
clusters of known doublets, 179 doublets satisfy this condition. Of
these, 91% has the same function that is shared by the remaining
doublets in the cluster. Expanding this approach to unknown genes, we
assigned 79 functions to 67 unknown genes (Supplementary Table 1

online). Many of those predictions are supported by experimental
studies in the literature. For example, we predicted that YLR183C
participates in mitosis, and a recent study revealed that it is involved in
the regulation of G1/S transition9. We assigned the function ‘cation
transport’ to YLL051C, which is known to have iron-regulated
expression10. To validate our prediction of YOR309C as a gene
involved in ‘rRNA processing’ we used northern blot analysis to
examine the abundance and the processing of cellular rRNAs in the
YOR309C knockout strain (Fig. 2). The presence of a strong 35S band
and the reduced abundance of other rRNA cleavage products suggest a
defect early in the 35S pre-rRNA processing pathway in the knockout
strain, which supports our prediction for YOR309C.

Finally, we generalized the 2nd-order method to reconstruct regu-
latory networks. In fact, the biological basis for 2nd-order correlation
is contained in the structure of regulatory networks. Particularly, it is
the correlated activities of transcription factors that give rise to the
2nd-order expression correlation between their target gene pairs,
or more generally, target gene sets. In the following, we illustrate
this mechanism by analyzing the 2nd-order relationship of two
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Figure 2 Northern blot analysis showing the abundance of different cellular

rRNAs in wild-type and DYOR309C cells. The 35S pre-rRNA band is

prominent in DYOR309C cells. In addition, compared to wild-type cells,

DYOR309C cells have lower levels of 18S and 25S rRNA, and of their

respective precursors 20S and 27S. This suggests a defect early in the

35S pre-rRNA processing pathway in the knockout strain. Oligonucleotide

probes specific for different cleavage processing sites (D-A2, and E-C2) and

the products 18S and 25S were used30.

Figure 1 The expression profiles and 1st-order expression correlation profiles

of gene pairs POG1-MPT5 and SDA1-CDC5 over six microarray data sets

(data set details in Supplementary Methods online). All four genes are

involved in the regulation of the cell cycle. The upper panel shows the

normalized expression profiles of POG1 (red solid) and MPT5 (red dashed),

and the middle panel shows those of SDA1 (green solid) and CDC5 (green

dashed). The bottom panel shows expression correlation of the two gene

pairs across six data sets. It is obvious that the overall expression similarity
between the two gene pairs is not significantly high. However, as indicated

in the bottom panel, their 1st-order expression correlation profiles exhibit

high correlation, that is, the four genes have high 2nd-order expression

correlation. To clearly demonstrate the pattern, the six data sets were sorted

in decreasing order of the expression correlation difference between the two

gene pairs. In each data set, expression profiles were sorted in increasing

order of POG1 expression value.
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transcription modules. A transcription module is defined to be a set of
genes that are regulated by the same transcription factor(s) based on
genome-wide location data11, and are coexpressed in at least m out of
a total of n data sets (m 4 n/4 and m Z 8 in this study). If two
transcription modules form or do not form two coexpression clusters
mostly under the same set of conditions (that is, in the same data
sets), it in fact suggests that the two (sets of) transcription factors
regulating the two modules are mostly active or inactive simulta-
neously. Such cooperativities between two sets of transcription factors
can be quantified using 2nd-order expression correlation: (i) We
assessed the activities of a transcription factor by the tightness of co-
expression among the genes it regulates. Specifically, for a transcription
module, we constructed a vector of length n storing the average pairwise
expression correlations among its member genes for each data set. This
1st-order average expression correlation profile can be interpreted as the
activity profile of the transcription factor(s) that regulate the module.

(ii) We calculated the correlation between two activity profiles of
transcription factors, that is, 2nd-order expression correlation, to
measure the cooperativity between the two transcription factors.

Based on the genome-wide location data and coexpression clusters
recurrent in multiple data sets, we identified 60 transcription modules,
all of which demonstrated a high degree of consistency in terms of
their known functions and regulations (Supplementary Table 2
online). Among module pairs controlled by distinct transcription
factors, 34 pairs showed high 2nd-order correlation. For these module
pairs, we further traced the potential source of cooperativity of their
regulators using DNA binding data11, protein interaction12,13 and
protein complex14,15 data. Given two modules controlled by respective
transcription factor(s) TF1 and TF2, which for simplicity are assumed
to be individual instead of sets of transcription factors, there are at
least three types of direct causes of the cooperativity between TF1 and
TF2 (Fig. 3a): the expressions of TF1 and TF2 are activated by a
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Regulation of transcription modules by transcription factors, based on DNA binding data and supported by recurrent expression clusters

Regulation between transcription factors, based on DNA binding data and supported by 2nd-order expression correlation

Protein interactions between two transcription factors, based on experimental data and supported by 2nd-order expression correlation

Two transcription modules with high 2nd-order expression correlations

a

b

Figure 3 Reconstruction of regulatory networks by 2nd-order expression analysis. (a) Three types of possible transcription cascades that could explain

2nd-order correlation of two transcriptional modules. Given two modules controlled by two transcription factors, TF1 and TF2, respectively, the coactivation

of the two modules implies cooperativity between TF1 and TF2, which may be caused by a type I cascade in which the activities of TF1 and TF2 are

controlled by common transcription factor(s), TF3; or a type II cascade in which the activity of TF2 is controlled by TF1, or vice versa; or a type III cascade in

which TF1 and TF2 interact at the protein level. (b) Regulatory network reconstructed on the basis of the derived transcription cascades. Yellow ovals denote

transcription factors; green boxes are transcription modules defined by recurrent expression clusters.
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common transcription factor TF3 (type I transcription cascade), TF1

activates the expression of TF2 (type II transcription cascade), or TF1

and TF2 interact at the protein level (type III transcription cascade).
In the special case where a module pair shares a majority of
common genes, the cooperativity between TF1 and TF2 is known to
be combinatorial control. Note that the three types of transcription
cascades are certainly only a few of the many possibilities.

We identified a significant portion (29%, P o 10�5 by Monte Carlo
simulation) of cooperative module pairs as participants in transcrip-
tion cascades: 2 pairs in type I, 8 pairs in type II, and 3 pairs in type III
cascades. In fact, these transcription cascades interconnect into a
partial cellular regulatory network (Fig. 3b). A large proportion of
identified transcription cascades are involved in cell cycle control.
Examples are the type I/II cascade involving SWI4 and NDD1 (the
autoregulation of NDD1 leads to both types I and II construction), the
type II/III cascade involving SWI4 and SWI6, the type II cascade
involving SWI4 and MBP1 and the type III cascade involving SWI6
and MBP1. Many identified cascades can be validated by experiments
in the literature9,16. In Supplementary Notes online, we show a
detailed example of building the transcription cascade among the

regulator GCN4, the LEU3 module and the MET4 module, the
interrelationships of which are not obvious in the 1st-order expression
level but can be revealed with the aid of 2nd-order analysis, all with
further support in the literature11,17,18.

We further extend the study from analyzing two transcription
modules to k modules to capture the relationships among multiple
sets of transcription factor(s). Clustering the 1st-order profiles of
the 60 modules, we obtain sets of modules the regulators of which
are likely to be concurrently active across different conditions. In the
majority of the clusters, the member modules participate in the
same biological processes (Fig. 4), confirming again the utility of
the 2nd-order approach in grouping functionally related genes.
An additional application of the 2nd-order clustering is to assign
transcription factors to biological processes, a difficult task with
common clustering methods due to the subtle expression patterns
of transcription factors. For an unknown transcription factor in a
module cluster, we can annotate its function by integrating the
evidence of two dimensions: (i) the functions of known genes in its
target module, and (ii) the functions of known genes in other modules
in the same module cluster, including both the transcription factors
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HAP4: [ATP14, ATP17, ATP2, ATP20, ATP3, ATP5] (23)
HAP3-HAP4-IKI1 : [COX4, COX6, QCR10] (3)
BAS1 : [ADE17, ADE2, ADE8, SHM2] (4)
MET4 : [MET10, MET14, MET28, SUL2] (4)
LEU3 : [BAT1, ILV2, LEU9] (3)
ARG81 : [ARG1, ARG3, ARG5.6, ARG8] (4)
ARG80-ARG81 : [ARG3, ARG5.6, ARG8] (3)
GCN4 : [ALD 5, ARG1, ARG2, ARG3, ARG4] (31)
LEU3 : [BAT1, LEU1, OAC1] (3)
CIN5-NRG1-YAP 6 : [HXT11, HXT12, HXT9] (3)
CIN5-NRG1-YAP 6 : [FSP2, YIL172C, YOL157C] (3)
YAP 5 : [COS1, COS3, COS4, COS5, COS6, COS8] (6)
MBP1 : [MCD1, PDS5, RTT107] (3) 
MBP1 : [CLB6, MCD1, YNR009W] (3)
GCN4-SUM1 : [YJR026W, YJR027W, YJR028W] (4)
ABF1 : [EBP2, RPF2, RRP 45] (3)
ABF1 : [BCP1, BRX1, DBP6, EBP2, GIS2, LTV1] (32)
REB1 : [BUD27, PRP43, RMT2, RPA34, RPC19] (7)
RCS1 : [HGH1, LOC1, NOC3, YDR152W, YHL013C] (5)
YAP5 : [BUD19, RPL13A, RPL13B, RPL16A] (17)
PDR1 : [RPL12A, RPL13A, RPL16A, RPL16B] (8)
GAT3 : [RPL13A, RPL16B, RPS22A] (3)
PDR1 : [NOP14, REX4, RIX1] (3)
STB1 : [BBP1, CLN2, YOL007C] (3)
SWI6 : [CDC45, RAD27, RNR1, SPT21, YPL267W] (5)
SWI4 : [CLB6, RNR1, SPT21, YPL267W] (4)
MBP1 : [CDC21, CDC45, CLB5, CLB6, CLN1] (17)
MBP1-SWI6 : [IRR1, PDS5, SPT21] (3)
SWI5 : [ASH1, BUD9, DSE3, EGT2, PCL9] (6)
SWI4 : [AMN1, DSE3, PCL9] (3)
SWI4 : [GAS1, HTA1, HTB1] (3)
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HIR1-HIR2 : [HHF2, HHT1, HHT2, HTA1, HTB1] (5)
GAT3-YAP 5 : {YEL076C-A, YHL049C, YLR462W] (6)
SWI4 : [GIC2, MSB2. PRY2, SCW10, SIM1, SRL11] (9)
SWI4-SWI6 : [GIC2, PRY2, SVS1] (3)
SWI4-SWI6 : [PRY2, SVS1, YNL300W] (3) 
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MSN4 : [YEL077C, YIL177C, YRF1-1, YRF1-2] (7)
GAT3-YAP 5 : [YBL113C, YIL177C, YJL225C] (11)
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MSN4-SWI 5 : [YEL077C. YRF1-3, YRF1-7] (3)
GAT3-PDR1-YAP 5 : [BSC3. YBL111C, YHL049C] (6)
GAT3-PDR1-RGM1-YAP 5 : [BSC3, YBL111C] (5)
ACE2 : [CTS1, DSE1, DSE2, EGT2, SCW11] (5)
ACE2 : [BUD9, CTS1, SCW11] (3)
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Figure 4 Hierarchical clustering of transcription modules based on their average 1st-order expression correlation profiles. The color of each cell represents
the standardized average 1st-order correlation of a transcription module (row) within a data set (column), where red/green indicates high/low correlation, and

gray indicates insufficient data. The name of the data set is at the top. In each row to the right, the name of the transcription factor(s) is listed before the

colon, multiple combinatorial transcription factors are concatenated with a hyphen, genes in brackets, ordered alphabetically, are in the same transcription

module. Because of space limitations, gene lists may not be complete for some transcription modules (for complete gene lists refer to Supplementary

Table 2 online); the total number of genes in each transcription module is indicated in parentheses. For example: ‘‘TF1-TF2: [ Gene1, Gene2, Gene3 ] (3)’’.
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and their target genes. In Supplementary Notes online, we provide a
detailed example of combining these two types of evidences to predict
that the transcription factor GAT3 plays a role in mitotic and meiotic
cell cycles, a prediction that is consistent with the growth pattern of its
deletion strain19 and its cell cycle phase–specific expression in two
independent studies20,21.

We have used 2nd-order expression analysis to heterogeneous data
sets, to annotate functions of genes beyond coexpression and to
identify cooperativity among transcription factors to reconstruct
regulatory networks. Integrating heterogeneous data sets is one of
the current challenges in bioinformatics. Previous studies6,22 have
emphasized extracting modules in which genes manifest a common
pattern across a significant subset of data. In our approach, we go one
step further to consider the high-order relationship between those
modules, that is, clustering modules exhibiting similar activity pat-
terns across different types of conditions. Such 2nd-order similarity is
not visible at the first-order level examined by current methods, and it
allows us to cluster genes with the same function yet not obviously
coexpressed. In terms of regulatory network reconstruction, the major
difference between our method and other methods23,24 is that
2nd-order analysis by design not only derives the transcription
modules as do 1st-order methods, but also reveals network relation-
ships among different transcription modules, and in turn sheds light
on the cooperativity among their regulators. Specifically, we overcome
a major obstacle in regulatory analysis—the quantification of the
activities of transcription factors—by measuring the coexpression
tightness of the transcription module it regulates. We note that a
recently published study also addressed the same question, using a
different approach7. Based on the activity profile of individual
transcription factors, the 2nd-order correlation measures the coopera-
tivity between them, which together with DNA binding and protein
interaction data, provides inference on transcription cascades. In
doing so, it becomes possible to trace the signals one-step upstream
along transcription cascades, where signals are influential yet generally
subtle to measure, and where relationships are normally difficult to
infer. Furthermore, when larger collections of data sets become
available in the near future, 2nd-order analysis can be extended to
study patterns among transcription factors or transcriptional modules
that are more complex than correlation. For example, we can adapt a
variety of approaches currently applicable to gene expression profiles
to the activity profiles of transcription factors to elucidate their
complex interrelationships. In this way, 2nd-order analysis can reveal
the structure of hierarchical regulatory networks one level higher than
current methods.

METHODS
Microarray data. We integrated all yeast microarray data sets (up to January

2003), each containing at least eight experiments, from the Stanford Microarray

Database2 and from the NCBI Gene Expression Omnibus1. We included two

additional cDNA array data sets25,26 and also the Rosetta Compendium data27

to gain broader coverage of experimental conditions. Note that the power of the

2nd-order method can be maximized if each data set contains a set of coherent

biological conditions (some data sets need additional processing to meet this

requirement, e.g. the Rosetta compendium data), and if the collected data sets

together cover a greater range of perturbations (details in Supplementary

Methods online).

Construction of functional categories. We constructed 43 functional cate-

gories covering 2,429 known yeast genes based on the biological process

ontology of gene ontology28 as previously described5. Each functional category

contains more than 60 genes and none of its subcategories contains more than

60 genes (details in Supplementary Methods online).

Computing the 1st-order expression and 2nd-order expression correlation.

For any two genes a and b from the same functional category, we define their

1st-order expression correlation Ja,b,k, in the data set k as the leave-one-out

Pearson’s correlation coefficient with the minimum absolute value, that is, the

jackknife correlation. This estimate is a measurement robust against single

experimental outliers and sensitive to overall similarities in expression patterns.

We thus obtain a 1st-order expression correlation profile (Ja,b,k), k ¼ 1, y, n,

for genes a and b. Provided with n data sets subjected to different types of

perturbations, a gene pair is defined as a doublet if it demonstrates coexpres-

sion (J 4 t) in at least m out of n experimental groups (m 4 n/4 and m Z 8).

Note that n may vary for different gene pairs because of missing data, and

a data set is included only if it contains at least eight experiments

that simultaneously measured the expressions of genes a and b. We choose

t ¼ 0.6 because it is a statistically conservative cutoff value, which nonetheless

retains a sufficient number of functional links (details in Supplementary

Methods online). Between the 1st-order expression correlation vectors of any

two nonoverlapping doublets a-b and c-d, we compute jackknife correlation to

identify quadruplets with high (40.6) 2nd-order expression correlation. A

quadruplet is defined to be functionally homogeneous if all four genes come

from the same gene ontology functional category.

In this study, we treat each data set equally in terms of its contribution to

2nd-order expression correlation. However, as our method will be applied more

generally to larger collections of microarray data sets, there may be redundan-

cies in some of the experimental conditions. Additional weighting schemes may

be applied to offset such redundancies.

Functional annotation. For a functional category i, our functional annotation

scheme consists of three steps. (i) For a unknown gene a, we count the number

li of the doublets in which a is paired with genes from the functional category

i. Modeling li as a hypergeometric random variable, we compute the statistical

significance P(a, i) of associating gene a with the functional category i. If P(a, i)

o 0.05, we include the li doublets into the collection Ui. We repeat the step for

all unknown genes to construct the collection Ui. This step serves as a

prefiltering of doublets that are highly likely to represent true functional links.

(ii) For the functional category i, we cluster all doublets in Ui and all doublets

of known functions using the TightCluster algorithm29 (a resampling-based

approach that produces stable and tight clusters without forcing all points into

clusters), and select the top 100 tightest clusters for further analysis. We repeat

the step for all functional categories. Note that the 2nd-order correlation was

used as the similarity measure during the clustering. (iii) If a tight cluster

contains at least three doublets and all of its known genes fall into the same

functional category, we assign this function to those unknown genes. Because

the information used in step i (1st-order expression information) and that

in steps ii and iii (2nd-order expression information) are complementary,

satisfying both criteria imposes very strong constraints on our predictions.

Assess the statistical significance of the number of identified quadruplets. To

demonstrate the power of 2nd-order expression analysis in grouping function-

ally related doublets into quadruplets, we evaluate the number of functionally

homogenous doublet pairs expected under the null hypothesis. We construct

1,000 random pairs of doublets from the 5,142 doublets derived from known

genes, and calculate the ratio g of functionally homogeneous pairs. This is done

for 105 iterations. The observed quantity is compared to the distribution of

g generated under the null to derive the P value.

Identification of transcription modules. Given n expression data sets and all

genes known to be under the regulation of a transcription factor based on

genome-wide location data11 (we used a P value cutoff of 10�3), we searched

for a subset of genes G ¼ {g1,g2,y, gl}, where l Z 3 and the jackknife

expression correlation of all gene pairs in G were greater than 0.6 in the same m

out of n data sets, where m 4 n/4 and m Z 8. For each gene cluster, we

constructed the 1st-order average expression correlation profile by computing

the average pairwise expression correlations of its member genes in each of the

n data sets. We merged two gene clusters if (i) the two gene clusters were under

the regulation of the same transcription factor based on DNA binding data, (ii)

they differed only by one gene, and (iii) they showed high correlation of their
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1st-order average expression correlation profile. In this way, we determined

60 nonredundant gene clusters, defined as transcription modules.

Assessing the statistical significance of the number of identified transcrip-

tion cascades. To statistically evaluate the power of our method in revealing

transcription cascades, we investigated the expected numbers of such cascades

discovered under the null hypothesis. We randomly picked 1,000 pairs of

transcription factors from the 106 transcription factors for which genome-wide

location data is available. We then counted the percentage of transcription

factor pairs, denoted as r, which participated in transcription cascades types I,

II or III, based on DNA binding and protein interaction/complex data. We

repeated the procedure 105 times, and generated a distribution for r. We

compared the observed 29% to the distribution of r generated under the null

hypothesis to derive the P value.

Yeast cell culture and northern blots. S. cerevisiae strains DYOR309C and

BY4741 (wild-type) were purchased from Open Biosystems. Cells were cultured

in YPD medium (1% yeast extract, 2% peptone, 2% glucose) at 30 1C. RNA

was isolated from cells at mid-log phase using glass beads and phenol/

choloroform and precipitated with ethanol. We loaded 5 mg RNA per lane

on a 1% agarose formaldehyde gel and transferred to Biodyne B nylon

membranes (Millipore). DNA oligonucleotides specific for D-A2, E-C2, 18S

and 25S30 were labeled with 32P and hybridized overnight to membranes with

ULTRAhyb Ultrasensitive Hybridization Buffer (Ambion) at 37 1C. After

washing with 2� SSC, 0.1% SDS, membranes were exposed and scanned using

a Phosphoimager (Molecular Probes).

Note: Supplementary information is available on the Nature Biotechnology website.

ACKNOWLEDGMENTS
We thank Robert Gentleman for making his computer resources available
for part of this project, Timothy Hughes for technical advice and Michelle
Arbeitman for sharing her lab space. We also thank two anonymous reviewers
for their helpful comments. The work of X.J.Z. was supported by the National
Science Foundation grant DMS0090166 to W.H.W., the Faculty Setup Grant
from USC and the National Institutes of Health (NIH) grant R01GM067243
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