Learning from natural-language advice and reinforcements is the topic of the PILLAR research project.
We present a new approach to learning a semantic parser (a system that maps natural language sentences into logical form). Unlike previous methods, it exploits an existing syntactic parser to produce disambiguated parse trees that drive the compositional semantic interpretation. The resulting system produces improved results on standard corpora on natural language interfaces for database querying and simulated robot control.
ML ID: 229
Semantic parsing involves deep semantic analysis that maps natural language sentences to their formal executable meaning representations. This is a challenging problem and is critical for developing computing systems that understand natural language input. This thesis presents a new machine learning approach for semantic parsing based on string-kernel-based classification. It takes natural language sentences paired with their formal meaning representations as training data. For every production in the formal language grammar, a Support-Vector Machine (SVM) classifier is trained using string similarity as the kernel. Meaning representations for novel natural language sentences are obtained by finding the most probable semantic parse using these classifiers. This method does not use any hard-matching rules and unlike previous and other recent methods, does not use grammar rules for natural language, probabilistic or otherwise, which makes it more robust to noisy input.Besides being robust, this approach is also flexible and able to learn under a wide range of supervision, from extra to weaker forms of supervision. It can easily utilize extra supervision given in the form of syntactic parse trees for natural language sentences by using a syntactic tree kernel instead of a string kernel. Its learning algorithm can also take advantage of detailed supervision provided in the form of semantically augmented parse trees. A simple extension using transductive SVMs enables the system to do semi-supervised learning and improve its performance utilizing unannotated sentences which are usually easily available. Another extension involving EM-like retraining makes the system capable of learning under ambiguous supervision in which the correct meaning representation for each sentence is not explicitly given, but instead a set of possible meaning representations is given. This weaker and more general form of supervision is better representative of a natural training environment for a language-learning system requiring minimal human supervision.
For a semantic parser to work well, conformity between natural language and meaning representation grammar is necessary. However meaning representation grammars are typically designed to best suit the application which will use the meaning representations with little consideration for how well they correspond to natural language semantics. We present approaches to automatically transform meaning representation grammars to make them more compatible with natural language semantics and hence more suitable for learning semantic parsers. Finally, we also show that ensembles of different semantic parser learning systems can obtain the best overall performance.
ML ID: 215
One of the main goals of natural language processing (NLP) is to build automated systems that can understand and generate human languages. This goal has so far remained elusive. Existing hand-crafted systems can provide in-depth analysis of domain sub-languages, but are often notoriously fragile and costly to build. Existing machine-learned systems are considerably more robust, but are limited to relatively shallow NLP tasks.In this thesis, we present novel statistical methods for robust natural language understanding and generation. We focus on two important sub-tasks, semantic parsing and tactical generation. The key idea is that both tasks can be treated as the translation between natural languages and formal meaning representation languages, and therefore, can be performed using state-of-the-art statistical machine translation techniques. Specifically, we use a technique called synchronous parsing, which has been extensively used in syntax-based machine translation, as the unifying framework for semantic parsing and tactical generation. The parsing and generation algorithms learn all of their linguistic knowledge from annotated corpora, and can handle natural-language sentences that are conceptually complex.
A nice feature of our algorithms is that the semantic parsers and tactical generators share the same learned synchronous grammars. Moreover, charts are used as the unifying language-processing architecture for efficient parsing and generation. Therefore, the generators are said to be the inverse of the parsers, an elegant property that has been widely advocated. Furthermore, we show that our parsers and generators can handle formal meaning representation languages containing logical variables, including predicate logic.
Our basic semantic parsing algorithm is called WASP. Most of the other parsing and generation algorithms presented in this thesis are extensions of WASP or its inverse. We demonstrate the effectiveness of our parsing and generation algorithms by performing experiments in two real-world, restricted domains. Experimental results show that our algorithms are more robust and accurate than the currently best systems that require similar supervision. Our work is also the first attempt to use the same automatically-learned grammar for both parsing and generation. Unlike previous systems that require manually-constructed grammars and lexicons, our systems require much less knowledge engineering and can be easily ported to other languages and domains.
ML ID: 214
This paper presents a method for learning a semantic parser from ambiguous supervision. Training data consists of natural language sentences annotated with multiple potential meaning representations, only one of which is correct. Such ambiguous supervision models the type of supervision that can be more naturally available to language-learning systems. Given such weak supervision, our approach produces a semantic parser that maps sentences into meaning representations. An existing semantic parsing learning system that can only learn from unambiguous supervision is augmented to handle ambiguous supervision. Experimental results show that the resulting system is able to cope up with ambiguities and learn accurate semantic parsers.
ML ID: 200
This paper presents the first empirical results to our knowledge on learning synchronous grammars that generate logical forms. Using statistical machine translation techniques, a semantic parser based on a synchronous context-free grammar augmented with lambda-operators is learned given a set of training sentences and their correct logical forms. The resulting parser is shown to be the best-performing system so far in a database query domain.
ML ID: 199
We present a method for utilizing unannotated sentences to improve a semantic parser which maps natural language (NL) sentences into their formal meaning representations (MRs). Given NL sentences annotated with their MRs, the initial supervised semantic parser learns the mapping by training Support Vector Machine (SVM) classifiers for every production in the MR grammar. Our new method applies the learned semantic parser to the unannotated sentences and collects unlabeled examples which are then used to retrain the classifiers using a variant of transductive SVMs. Experimental results show the improvements obtained over the purely supervised parser, particularly when the annotated training set is small.
ML ID: 198
This paper explores the use of statistical machine translation (SMT) methods for tactical natural language generation. We present results on using phrase-based SMT for learning to map meaning representations to natural language. Improved results are obtained by inverting a semantic parser that uses SMT methods to map sentences into meaning representations. Finally, we show that hybridizing these two approaches results in still more accurate generation systems. Automatic and human evaluation of generated sentences are presented across two domains and four languages.
ML ID: 197
Semantic parsing is the task of mapping a natural language sentence into a complete, formal meaning representation. Over the past decade, we have developed a number of machine learning methods for inducing semantic parsers by training on a corpus of sentences paired with their meaning representations in a specified formal language. We have demonstrated these methods on the automated construction of natural-language interfaces to databases and robot command languages. This paper reviews our prior work on this topic and discusses directions for future research.
ML ID: 196
We present a new approach for mapping natural language sentences to their formal meaning representations using string-kernel-based classifiers. Our system learns these classifiers for every production in the formal language grammar. Meaning representations for novel natural language sentences are obtained by finding the most probable semantic parse using these string classifiers. Our experiments on two real-world data sets show that this approach compares favorably to other existing systems and is particularly robust to noise.
ML ID: 191
Semantic parsing is the task of mapping natural language sentences to complete formal meaning representations. The performance of semantic parsing can be potentially improved by using discriminative reranking, which explores arbitrary global features. In this paper, we investigate discriminative reranking upon a baseline semantic parser, SCISSOR, where the composition of meaning representations is guided by syntax. We examine if features used for syntactic parsing can be adapted for semantic parsing by creating similar semantic features based on the mapping between syntax and semantics. We report experimental results on two real applications, an interpreter for coaching instructions in robotic soccer and a natural-language database interface. The results show that reranking can improve the performance on the coaching interpreter, but not on the database interface.
ML ID: 190
We present a novel statistical approach to semantic parsing, WASP, for constructing a complete, formal meaning representation of a sentence. A semantic parser is learned given a set of sentences annotated with their correct meaning representations. The main innovation of WASP is its use of state-of-the-art statistical machine translation techniques. A word alignment model is used for lexical acquisition, and the parsing model itself can be seen as a syntax-based translation model. We show that WASP performs favorably in terms of both accuracy and coverage compared to existing learning methods requiring similar amount of supervision, and shows better robustness to variations in task complexity and word order.
ML ID: 187
Most recent work on semantic analysis of natural language has focused on ``shallow'' semantics such as word-sense disambiguation and semantic role labeling. Our work addresses a more ambitious task we call semantic parsing where natural language sentences are mapped to complete formal meaning representations. We present our system Scissor based on a statistical parser that generates a semantically-augmented parse tree (SAPT), in which each internal node has both a syntactic and semantic label. A compositional-semantics procedure is then used to map the augmented parse tree into a final meaning representation. Training the system requires sentences annotated with augmented parse trees. We evaluate the system in two domains, a natural-language database interface and an interpreter for coaching instructions in robotic soccer. We present experimental results demonstrating that Scissor produces more accurate semantic representations than several previous approaches on long sentences.
In the future, we intend to pursue several directions in developing more accurate semantic parsing algorithms and automating the annotation process. This work will involve exploring alternative tree representations for better generalization in parsing. We also plan to apply discriminative reranking methods to semantic parsing, which allows exploring arbitrary, potentially correlated features not usable by the baseline learner. We also propose to design a method for automating the SAPT-generation process to alleviate the extra annotation work currently required for training Scissor. Finally, we will investigate the impact of different statistical syntactic parsers on semantic parsing using the automated SAPT-generation process.
ML ID: 184
We propose a new framework for aiding a reinforcement learner by allowing it to relocate, or move, to a state it selects so as to decrease the number of steps it needs to take in order to develop an effective policy. The framework requires a minimal amount of human involvement or expertise and assumes a cost for each relocation. Several methods for taking advantage of the ability to relocate are proposed, and their effectiveness is tested in two commonly-used domains.
ML ID: 166
Semantic parsing involves deep semantic analysis that maps natural language sentences to their formal executable meaning representations. This is a challenging problem and is critical for developing user-friendly natural language interfaces to computing systems. Most of the research in natural language understanding, however, has mainly focused on shallow semantic analysis like case-role analysis or word sense disambiguation. The existing work in semantic parsing either lack the robustness of statistical methods or are applicable only to simple domains where semantic analysis is equivalent to filling a single semantic frame.
In this proposal, we present a new approach to semantic parsing based on string-kernel-based classification. Our system takes natural language sentences paired with their formal meaning representations as training data. For every production in the formal language grammar, a Support-Vector Machine (SVM) classifier is trained using string similarity as the kernel. Each classifier then gives the probability of the production covering any given natural language string of words. These classifiers are further refined using EM-type iterations based on their performance on the training data. Meaning representations for novel natural language sentences are obtained by finding the most probable semantic parse using these classifiers. Our experiments on two real-world data sets that have deep meaning representations show that this approach compares favorably to other existing systems in terms of accuracy and coverage.
For future work, we propose to extend this approach so that it will also exploit the knowledge of natural language syntax by using the existing syntactic parsers. We also intend to broaden the scope of application domains, for example, domains where the sentences are noisy as typical in speech, or domains where corpora available for training do not have natural language sentences aligned with their unique meaning representations. We aim to test our system on the task of complex relation extraction as well. Finally, we also plan to investigate ways to combine our semantic parser with some recently developed semantic parsers to form committees in order to get the best overall performance.
ML ID: 181
Semantic parsing is the construction of a complete, formal, symbolic meaning representation of a sentence. While it is crucial to natural language understanding, the problem of semantic parsing has received relatively little attention from the machine learning community. Recent work on natural language understanding has mainly focused on shallow semantic analysis, such as word- sense disambiguation and semantic role labeling. Semantic parsing, on the other hand, involves deep semantic analysis in which word senses, semantic roles and other components are combined to produce useful meaning representations for a particular application domain (e.g. database query). Prior research in machine learning for semantic parsing is mainly based on inductive logic programming or deterministic parsing, which lack some of the robustness that characterizes statistical learning. Existing statistical approaches to semantic parsing, however, are mostly concerned with relatively simple application domains in which a meaning representation is no more than a single semantic frame.
In this proposal, we present a novel statistical approach to semantic parsing, WASP, which can handle meaning representations with a nested structure. The WASP algorithm learns a semantic parser given a set of sentences annotated with their correct meaning representations. The parsing model is based on the synchronous context-free grammar, where each rule maps a natural-language substring to its meaning representation. The main innovation of the algorithm is its use of state-of-the-art statistical machine translation techniques. A statistical word alignment model is used for lexical acquisition, and the parsing model itself can be seen as an instance of a syntax-based translation model. In initial evaluation on several real-world data sets, we show that WASP performs favorably in terms of both accuracy and coverage compared to existing learning methods requiring similar amount of supervision, and shows better robustness to variations in task complexity and word order.
In future work, we intend to pursue several directions in developing accurate semantic parsers for a variety of application domains. This will involve exploiting prior knowledge about the natural-language syntax and the application domain. We also plan to construct a syntax-aware word-based alignment model for lexical acquisition. Finally, we will generalize the learning algorithm to handle context-dependent sentences and accept noisy training data.
ML ID: 180
We introduce a learning semantic parser, Scissor, that maps natural-language sentences to a detailed, formal, meaning-representation language. It first uses an integrated statistical parser to produce a semantically augmented parse tree, in which each non-terminal node has both a syntactic and a semantic label. A compositional-semantics procedure is then used to map the augmented parse tree into a final meaning representation. We evaluate the system in two domains, a natural-language database interface and an interpreter for coaching instructions in robotic soccer. We present experimental results demonstrating that Scissor produces more accurate semantic representations than several previous approaches.
ML ID: 171
This paper presents a method for inducing transformation rules that map natural-language sentences into a formal query or command language. The approach assumes a formal grammar for the target representation language and learns transformation rules that exploit the non-terminal symbols in this grammar. The learned transformation rules incrementally map a natural-language sentence or its syntactic parse tree into a parse-tree for the target formal language. Experimental results are presented for two corpora, one which maps English instructions into an existing formal coaching language for simulated RoboCup soccer agents, and another which maps English U.S.-geography questions into a database query language. We show that our method performs overall better and faster than previous approaches in both domains.
ML ID: 160
We describe our current efforts towards creating a reinforcement learner that learns both from reinforcements provided by its environment and from human-generated advice. Our research involves two complementary components: (a) mapping advice expressed in English to a formal advice language and (b) using advice expressed in a formal notation in a reinforcement learner. We use a subtask of the challenging RoboCup simulated soccer task as our testbed.
ML ID: 151
This paper presents an approach for inducing transformation rules that map natural-language sentences into a formal semantic representation language. The approach assumes a formal grammar for the target representation language and learns transformation rules that exploit the non-terminal symbols in this grammar. Patterns for the transformation rules are learned using an induction algorithm based on longest-common-subsequences previously developed for an information extraction system. Experimental results are presented on learning to map English coaching instructions for Robocup soccer into an existing formal language for coaching simulated robotic agents.
ML ID: 140