|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectweka.classifiers.Classifier
weka.classifiers.DistributionClassifier
weka.classifiers.EnsembleClassifier
weka.classifiers.meta.TestEnsembleClassifier
This class is for testing Ensemble evaluation
Field Summary | |
protected int |
m_NumIterations
|
protected java.util.Random |
random
|
Fields inherited from class weka.classifiers.EnsembleClassifier |
m_EnsembleWts, m_SumEnsembleWts, m_TrainEnsembleDiversity, m_TrainEnsembleError, m_TrainError |
Constructor Summary | |
TestEnsembleClassifier()
|
Method Summary | |
void |
buildClassifier(Instances data)
Generates a classifier. |
double[] |
distributionForInstance(Instance instance)
Calculates the class membership probabilities for the given test instance. |
double[] |
getEnsemblePredictions(Instance instance)
Returns class predictions of each ensemble member |
double |
getEnsembleSize()
Returns size of ensemble |
double[] |
getEnsembleWts()
Returns vote weights of ensemble members. |
static void |
main(java.lang.String[] argv)
Main method for testing this class. |
Methods inherited from class weka.classifiers.EnsembleClassifier |
computeEnsembleMeasures, enumerateMeasures, getMeasure, initMeasures, measureTrainEnsembleDiversity, measureTrainEnsembleError, measureTrainError, updateEnsembleStats |
Methods inherited from class weka.classifiers.DistributionClassifier |
calculateEntropy, calculateLabeledInstanceMargin, calculateMargin, classifyInstance |
Methods inherited from class weka.classifiers.Classifier |
forName, makeCopies |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
protected int m_NumIterations
protected java.util.Random random
Constructor Detail |
public TestEnsembleClassifier()
Method Detail |
public void buildClassifier(Instances data) throws java.lang.Exception
Classifier
buildClassifier
in class Classifier
data
- the training data to be used for generating the
bagged classifier.
java.lang.Exception
- if the classifier could not be built successfullypublic double[] distributionForInstance(Instance instance) throws java.lang.Exception
distributionForInstance
in class DistributionClassifier
instance
- the instance to be classified
java.lang.Exception
- if distribution can't be computed successfullypublic double[] getEnsemblePredictions(Instance instance) throws java.lang.Exception
getEnsemblePredictions
in class EnsembleClassifier
java.lang.Exception
public double[] getEnsembleWts()
getEnsembleWts
in class EnsembleClassifier
public double getEnsembleSize()
getEnsembleSize
in class EnsembleClassifier
public static void main(java.lang.String[] argv)
argv
- the options
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |