
Reaching Agreement on Processor Group Membership inSynchronous Distributed Systems�Flaviu CristianComputer Science and EngineeringUniversity of California, San DiegoLa Jolla, California 92093-0114
aviu@cs.ucsd.eduAbstractReaching agreement on the identity of correctly functioning processors of a dis-tributed system in the presence of random communication delays, failures and proces-sor joins is a fundamental problem in fault-tolerant distributed systems. Assuming asynchronous communication network that is not subject to partition occurrences, wespecify the processor-group membership problem and we propose three simple proto-cols for solving it. The protocols provide all correct processors with consistent viewsof the processor-group membership and guarantee bounded processor failure detectionand join delays.Key words: Communication network { Distributed system { Failure detection {Fault tolerance { Real time system { Replicated data1 IntroductionWhen designing a computing service that must remain available despite component failures,a key idea is to replicate service state information at several servers running on distinct pro-cessors. The service state typically consists of the server-group membership, that is, the setof all correctly functioning servers that cooperate to provide the service, and service speci�cstate information, such as the queue of service requests accepted and not yet completed,the current assignment of work to various active servers, and the state of the physical re-sources used to provide the service. Server replication lets a service be highly availabledespite processor or server failures. Indeed, once the surviving servers detect the failure of�published in Distributed Computing, Vol. 4, pp. 175-187, 19911

some of their peers, they have enough state information to redistribute among themselvesthe workload handled by the failed servers. However, replication creates problems that donot exist in non-redundant systems. Perhaps the most di�cult new problem is achievingagreement among replicated servers on a global service state despite random informationpropagation delays, component failures, and server joins. Such agreement is necessary ifthe goal is to make a replicated server-group behave as a single logical server rather thanas a group of autonomous processes.Earlier papers have investigated fault-tolerant protocols for agreeing on service speci�cglobal states in replicated server-groups whose membership can decrease but not increase[CASD85, Cri90]. This paper focuses on the problem of reaching agreement on the mem-bership of dynamic server-groups that can shrink with failures and grow with joins. Webreak down this goal into two sub-goals. First, we show how to achieve agreement on theidentity of all correctly functioning processors that can execute server processes. We referto this �rst problem as the processor-group membership problem. Second, assuming theprocessor-group membership problem solved, we show how to solve the server-group mem-bership problem. The solution to the latter problem shows how to maintain agreement onthe global state of a server-group when server joins cause the group membership to increase.We begin by describing our system model and failure assumptions and by specifying theprocessor-group membership problem. The clear isolation and precise speci�cation of thisproblem is a key contribution of the paper. Another contribution is the description ofthree protocols for solving the problem. The �rst protocol provides fast processor failuredetection but can require signi�cant message tra�c overhead, even when no failures occur.To reduce this overhead, we derive two other protocols which have a (provably) minimalmessage overhead in the absence of failures, but that provide longer failure detection delays.The simplicity of these three protocols compares favorably with the complexity of earlierknown solutions to the membership problem [BJ87, Car85, CM84, ASC85, Wal82].The membership problem is a fundamental problem of distributed computing, like routing,clock synchronization, atomic broadcast, or atomic commit, in the sense that once solved, itallows easy solutions to other important problems encountered when designing fault-tolerantdistributed applications. To illustrate this point, we show how a processor membershipservice helps solve the server-group membership problem, the problem of ensuring highavailability of computing services in a distributed system, and the problem of preciselyde�ning the scope of server-group communication. We also examine some optimizationsand possible extensions to our three algorithms. We conclude by comparing our approachwith other published approaches. 2

2 System model and failure hypothesesWe consider a system consisting of distributed server processes running on processors linkedby a physical network. There is total order \�" on the set P of processor identi�ers.Each processor consists of hardware (CPUs, I/O controllers, storage, clock, and so on)and software (operating system, communication subsystem, etc). The operating systemsupports process execution. The communication subsystem accepts messages from, anddelivers messages to, processes, manages message queues, and drives the physical networklinks. Collectively, the communication subsystems provide the distributed processes thatrun at various processors the abstraction of a communication network. The communicationsubsystems are the nodes of this network.2.1 Synchronous Communication NetworkAmong the communication services that we assume the network provides, the simplest is adatagram service. This service provides a cheap means for any process to send a messagem to any other process. This works as follows: the source process entrusts m to a networknode p, the node p sends m along a single physical route to another node q, and q delivers(that is, makes available) m to the target process. We do not make any assumption aboutthe topology of the network. It can be point-to-point or based on broadcast channels,such as token rings or busses. If it is not fully connected, we assume the nodes implementmessage forwarding. Neither do we make any assumption on datagrammessage transmissionprotocols. For instance, a datagram message might be broken down into, and transmittedas, a sequence of datagram packets, and lost packets might be retransmitted a �nite, a prioriknown, number of times before a message is considered lost. Between the acceptance of adatagram message m by a source node p and the moment m is delivered to the destinationprocess by the target node q, there is an arbitrary random delay. To avoid waiting foreverfor packets that will never arrive, there is a need to decide on a timeout delay d, suchthat a datagram message that travels more than d time units between node p and nodeq is considered lost. Such timeout delays are introduced by system designers to preventsituations in which a process A waits forever for a message from another process B that willnever arrive (for example, because of B's failure). Datagram timeout delays are establishedby studying statistics about network behavior under various load patterns, so as to ensurethat node-to-node datagram message transmission delays are smaller than d with very highprobability.The adoption of a bound d on datagram message delays divides datagram service behaviorsin two classes: correct behaviors and failures. The datagram service provided by twonetwork nodes p and q is correct if any datagram message m accepted at p for a targetprocess at q is delivered to that process by q within d time units. A datagram omissionfailure occurs if m is never delivered at q, while a performance failure occurs if m is delivered3

after d time units [CASD85]. There can be many causes for such failures. One is that thephysical packets used to transmit messages were (repeatedly, if low level re-transmissionsare implemented) corrupted and discarded. Another is that a bu�er over
ow occurred atthe target node. Yet another cause is a slow processing of datagram packets at the sourceor target communication subsystems, due to randomly occurring excessive network loadconditions.We assume that the datagram service can only su�er omission or performance failures.In addition to the datagram service, we assume the communication network also providesa di�usion service. A node p di�uses a message to another node q by sending di�usionpackets in parallel on all physically independent routes between p and q. In point-to-point networks, di�usion can be implemented as discussed in [CASD85], while in networksbased on redundant broadcast channels (e.g. rings, busses) di�usion can be implementedas reported in [Cri90]. We assume that there is some arbitrary, but �xed bound F onthe number of communication components (nodes and links) that can be faulty duringa di�usion, and that the network possesses enough redundant independent physical linksbetween any two pairs of nodes (p, q), so that a node q always receives at least one copy ofeach packet di�used by another node p despite up to F faulty communication components.We also assume that the rate at which di�usions are initiated is bounded, that this rate issmaller than the rate at which nodes can receive and process di�usion packets, and thatthe communication subsystems are properly dimensioned to provide enough bu�er capacityas well as bounded processing delays for di�usion packets under worst case network loadconditions (typically, di�usion packets have higher priority than any other type of packets).Under the above assumptions, any message m di�used by a correct node p is always receivedand processed at another correct node q within a known network delay N (which is a functionof F, network topology, and the worst case transmission and processing delay for di�usionpackets [CASD85, Cri90]). We call a communication network di�usion-synchronous (orsimply synchronous) if it ensures that any di�usion message entrusted to a correct node isreceived and processed by all correct nodes within N time units. The characteristic propertyof a synchronous network is that communication partitions which can prevent correct nodesfrom di�using information to each other within N time units, do not occur. Thus, in asynchronous network, the only reason why two nodes cannot communicate by using thenetwork message di�usion service is the failure of at least one of them.A synchronous communication network enables processor clocks to be synchronized. Weassume that processor clocks are reliable, monotonic (successive readings yield strictly in-creasing values), run within a linear envelope of real-time and show at any real-time valueswithin a known constant maximum deviation ", which is a function of the network delayN, and the re-synchronization period [CAS86]. Synchronized clocks allow us to reason interms of global system clock time, instead of real time. Throughout this paper \time"means \clock time". For instance, phrases such as \message m takes at most d time unitsbetween p and q" and \processes p, q broadcast message m at time T" mean \the delay4

experienced by m between p and q as measured on any processor clock is at most d" and\p broadcasts m when its local clock displays time T and q broadcasts m when its clockdisplays T", respectively.A synchronous communication network also enables the implementation of a synchronousatomic broadcast communication service [CASD85, Cri90]. Synchronous atomic broadcastprotocols ensure, for some time constant D that depends on N and ", the following prop-erties. If a node attempts to broadcast a message m at time T, then at time T + D eitherall correct nodes deliver m or none of them delivers m (atomicity). All messages deliveredare delivered in the same order at each correct node (order). If the sending node of m iscorrect, then all correct nodes deliver m at T + D (termination). Since in this paper atomicbroadcast is the only primitive used for broadcasting information, when we say "broadcast",we mean "atomic broadcast".Although the description of our solutions to the membership problem relies on the exis-tence of lower level clock synchronization and atomic broadcast network services, it shouldbe clear these lower level protocols are just used as "structuring tools" to shorten our pre-sentation. The only essential assumption made is that of a synchronous communicationnetwork. Protocols for implementing these lower level services in synchronous communica-tion networks in the presence of an arbitrary, but �xed number F of faulty components thatcan su�er crash, omission and performance failures have been described in previous publica-tions: [CAS86] describes a di�usion based clock synchronization protocol, while [CASD85]and [Cri90] describe di�usion and clock synchronization based atomic broadcast protocolsfor point-to-point and broadcast networks.The reliable communication achieved by using di�usions to broadcast information comeswith a price. While datagram messages are cheap, the di�usions used for atomic broadcastcan be expensive. For example, in a point-to-point network, each atomic broadcast costsapproximately n � d { n + 1 datagram messages, where n is the number of correct nodesand d is the average node degree, i.e. number of neighbors of a node [CASD85]. Similarly,the protocols of [Cri90] require F � n + 1 datagram messages to atomically broadcastinformation despite up to F processor performance failures (when only processor crashfailures can occur, the number of messages in the absence of failures is F + 1).2.2 Task Scheduling RulesThe datagram, clock synchronization and atomic broadcast services provided by the com-munication network are accessible to processes running under operating system supervision.Such processes can be structured into several parallel tasks (or threads). To explicitly starta task A with input parameters X at time T, the operating systems running on networkprocessors provide a "schedule (A, X) at T" primitive. A correct operating system inter-prets an invocation of this primitive as follows. If the invocation is made at a time T0 after5

the task start deadline T, A is not started. Otherwise, if T0 � T, A is started with inputparameters X at a time in the interval [T, T + �), where �, the maximum task schedulingdelay is a positive constant. Several invocations of schedule (A, X) at T with identicalparameters X made at times smaller than T result in just one start of A with parametersX. Task execution can be suspended, for instance, when a task waits for messages. Let B bea task suspended because it waits for a message m. If m is delivered by the communicationsubsystem at time T, a correct operating system interprets T as a start deadline for B,i.e. the system starts B in the interval [T, T + �). We assume that tasks scheduled tobe started at di�erent times are started in the order of their start deadlines. For exampleif tasks A and B of a process are startable in the intervals [T, T + �) and [T0, T0 + �),respectively where T < T0, then A is started before B. If two tasks A and B have a commonstart deadline T, we assume they are started in some arbitrary, but �xed, order, known toall operating system instances on all processors. For example, if tasks are uniquely identi-�ed by alphanumeric identi�ers, such an order can be the lexicographic order on characterstrings. This is the total order on task identi�ers assumed in this paper.We assume that an operating system never violates the ordering rules on task start eventsgiven above. However, due to excessive load conditions, a system might experience delayslonger than � between the occurrence of task start deadlines and task starts. Like the dconstant, the � constant is determined empirically, by studying statistics on task schedulingdelays under various load conditions, so as to ensure that an event which occurs at timeT results in the start of the task waiting for it by time T + � with high probability. Anoperating system that starts a task startable at time T at a time beyond T + � su�ers aperformance failure. Such operating system performance failures cause task (and hence pro-cess) performance failures. A process crash occurs either because the underlying operatingsystem crashes or because the execution of a process command results in an unanticipatedexception that causes the underlying system to abort the process. An operating systemcrashes when the handler of an exception detected during its execution terminates withan abort command. The invocation of this command triggers the execution of a prede�nedsequence of system restart commands. Similarly, a process abort (whether explicitly invokedfrom a process task or by the underlying operating system) prevents the process from re-acting to all events that occur process restart. After a process p crashes there is minimumrestart delay R: if the crash occurs at time T, p does not resume correct operation beforetime T + R.We assume that processes can only su�er crash and performance failures.Since in a typical system the constants d and � are at least two orders of magnitude greaterthan the time needed to consume and process a message by a short non-interruptible task,to simplify our presentation we ignore message processing times: we assume that once atask is started, it completes in zero time units. That is, on a correct processor, a taskstartable at time T starts and completes in the interval [T, T + �). (The very short non-interruptible tasks to be described later are consistent with this assumption.) Note also that6

the � uncertainty on task (and hence, process) scheduling delays introduces a new bound �= � + d + � on process-to-process datagram message delays. The �rst term represents theupper bound on the random delay between the moment a process sends a message and themoment the message is accepted by the source node, the second is the upper bound on thenode to node delay, and the third is the upper bound on the delay between the target nodeand the target process. In a similar manner, we denote by � = � + D + � the bound onprocess-to-process atomic broadcast delays.3 The processor-group membership serviceTo enable any client process on any correct processor of a synchronous distributed systemto use the processor membership service, this service is implemented by a group of serverprocesses replicated on all processors of the system. As far as the processor-group serviceis concerned, processors are represented by the membership servers that run on them. Thefailure of such a server is interpreted as the failure of its underlying processor. Becauseof this one-to-one correspondence, we equate membership servers and processors in whatfollows. We denote P by the set of correct membership servers, and adopt the conventionthat we refer to \correct servers" simply as \servers". We use the qualifying adjective\failed" only when talking about failed servers.The service provided by membership server p 2 P is as follows. When a local client processc declares an interest in knowing the processor membership, p gives c the membership ofthe current processor group and then noti�es c of any subsequent membership changesin a timely manner. Such noti�cations are sent to c until either c declares that it is nolonger interested in receiving them or the failure of c is reported to p by the underlyingoperating system. The management of the set of local clients interested in membership andthe mechanics of their noti�cation when membership changes occur are straightforwardand will not be explicitly mentioned in what follows. Instead, we focus only on the di�cultproblem of maintaining consistent knowledge of the processor-group membership at eachcorrect processor.New processor-groups are created in response to either processor starts or failures. Aprocessor start occurs either when a processor restarts after a failure or a shut-down or whena new processor is added to a system. To simplify our presentation, we equate a voluntaryprocessor shut-down, for example for maintenance reasons, with a processor failure. Atany point in real-time, we require a processor to be joined to at most one group. Thereexist times at which a processor might not be joined to any group, for example, betweenits start and the moment the processor joins its �rst group. To unambiguously designatethe di�erent processor-groups that might exist in time, we uniquely identify each group bya unique processor-group identi�er g (some reasons for this requirement are discussed insection 7.3). Let G denote the set of all possible processor-group identi�ers. We denote by7

joined: P �! f true, false gthe (total) predicate that, for any processor p, is true when p is joined to some group andis false when p is not joined to any group. A processor not joined to a group cannot takepart in any coordinated group activity. Letgroup: P �! Gbe the (partial) mapping that records the group to which a processor is joined, when it isjoined, i.e. if joined(p) then group(p) yields the identi�er of the group joined by p. Letfurthermoremembers: P �! Set-of-Pbe the (partial) mapping that records a processor's view of the membership of the group towhich it is joined, when it is joined, i.e. if joined(p) is true, then members(p) yields p's viewof the membership of group(p). The value of the above mappings varies with time. However,to keep our presentation simple we decided not to mention the time domain explicitly.We require a processor-group membership service to satisfy the following safety require-ments:(Ss): Stability of local views. After a processor joins a group, it stays joined to that groupuntil a failure is detected or a processor start occurs.(Sh): Agreement on history. Let p and q be processors correct throughout a certain timeinterval. If during that interval, p and q are joined to a common group g1 and the nextgroups joined by p and q after leaving g1 are g2 and g2', respectively, then g2 = g02.(Sa): Agreement on group membership. If two correct processors p and q are joined to thesame group, that is joined(p) & joined(q) and group(p) = group(q), then the two processorshave the same view of the membership of that group: members(p) = members(q).Because of this property, we let members(g) denote the view common to all members of agroup g. When requirements (Sa) or (Sh) are violated, di�erent group servers that dependon a processor membership service can perform inconsistent operations on the replicateddata they manage, leading to inconsistent replicas. The easiest way to achieve (Sa) wouldbe to set the views of all processors to the empty set. To avoid such trivial solutions, werequire that a processor p that has joined a group be a member of that group:(Sr): Re
exivity. If joined(p) then p 2 members(p).While (Sr) rules out the trivial solution of setting all processor views to the empty set,it does not rule out the equally trivial solution of setting them all to the total set of allprocessor. To make the views of group members be as close as possible to reality, we requirethat a processor-group membership protocol satisfy some timeliness requirements. First,8

we require that there be an upper bound J (for join delay), on the delay that can elapsebetween the start of a processor j and the moment j joins a processor-group, even whenother failures or joins occur concurrently with j's join:(Tj): Bounded join delays. There exists a time constant J such that, if a processor j startsat time T and j stays correct until time T + J, then by T + J the processor j joins a groupthat is also joined by each other processor that was correct throughout [T, T + J].Note that all processors that were correct between T and the join completion time arerequired to join the same group as the newcomer. In this way, any two correct processorsare forced to agree on the identi�er of the group resulting from the join.Second, we require that there be a bound D (for failure detection delay) on the time neededto detect processor failures:(Td): Bounded failure detection delays. There exists a time constant D such that, if aprocessor f joined to a group g fails at time T, then each member of g that stays correctthroughout [T, T + D] joins by T + D a group g0 such that f 62members(g0).We require this property to hold despite any number of other failure and join events thatcould occur concurrently with the failure of f. The (Td) property lets surviving processorsautomatically distribute among themselves the workload of any departing processors withina bounded time. For systems that have to meet hard real-time deadlines | even whencomponent failures and joins occur clustered in time | this requirement is essential.Note. The requirements above imply the following essential property: after a processor pstarts and joins a group g that has at least another member q, both p and q will see the\same" sequence of membership changes for as long as both remain correct. More precisely,if p and q stay correct from joining g until some time T and p sees a certain sequence ofmembership changes by time T-ma�x(J, D), then q sees the same membership changes inthe same order by time T. This property, together with the total order on the delivery ofgroup atomic broadcast messages (that can be used by correct processors to convey system-speci�c state updates to the other correct processors) enable all events that a�ect the stateof a system to be seen by all correct processors in the same order. This total event orderingcan substantially simplify the programming of replicated fault-tolerant services [Lam84].4 The periodic broadcast membership protocolWe begin our presentation of membership protocols by introducing a simple "periodic broad-cast" protocol. In sketching it, we �rst make the simplifying assumption that �, the boundon task scheduling delays, is 0. We relax this assumption later when we present the protocolin more detail. 9

4.1 Sketch of the periodic broadcast membership protocolJoin handling. A membership server j that starts at time S invites the other servers toform a new group by broadcasting a \new-group" message timestamped S. This messageis received by an arbitrary correct server p 2 P by time V = S + �. In response to a\new-group" message, each server p 2 P broadcasts a \present" message that contains itsidenti�er and indicates its willingness to join a new group. We call the set of servers thatbroadcast \present" messages for time V the processor membership as of view time V anddenote by MEMBERS(V) this set. The atomicity and termination properties of atomicbroadcast ensure that any two servers p, q 2 P and are correct during [V, V + �] receiveat time C = V + � the same set of \present" messages, and hence, can compute at Clocal membership views members(p) and members(q) equal to MEMBERS(V). Since allsuch servers agree on V and MEMBERS(V), we use V as (unique) identi�er for the newgroup with membership MEMBERS(V). After a server p computes (at C) the membershipof the group V, pp leaves the group (if any) to which it was previously joined, and joins V.Failure handling. While a server that starts can alert its peers about this event, a failedserver f cannot tell the surviving members of its group that they should form a new groupwithout it. In such a case, the passage of time is used to trigger after f's failure theformation of a new group from which f is excluded. This can be implemented by lettingeach member p of a group V check that, � time units after the view time V, its view ofthe membership is still consistent with reality. For simplicity we require � > �, to let plearn the membership as of view time V before it checks it for \currentness". (It is possibleto design membership protocols for � � �, but their analysis is somewhat more complex.)One simple way of checking that the membership at time V + � is still the same as thatat time V is to let all members of the group V broadcast at membership check time O =V + � \present" messages. If at membership con�rmation time O + � a member p of Vdetects that some f2members(p) is not in MEMBERS(V + �), then | by the atomicityand termination properties of atomic broadcast | all surviving members q of V detect atO + � that f2MEMBERS(V + �). When a surviving member q detects such a failure,it joins a new group V + � with MEMBERS(V + �). Whether membership changes aredetected or not, each surviving processor q schedules a new membership check time O0 = O+ � to check again the currentness of its view of the membership. This method e�ectivelyimposes a discrete sampling of the continuously changing processor membership reality intoa sequence of snapshots taken at V, V + �, V + 2�, etc.Agreement on membership check times. Let g be a processor-group with next membershipcheck time O = g + k�, for some integer k, and consider that a join initiated by a processorj results in a new group V, O { � < V < O. What membership check time should exist forthe new group V that will be created? The check time O scheduled in the old group g ora new check time V + �? We choose the new check time. In this way, the join of j leadsto the creation of an unscheduled check time V + � that cancels the previously scheduledcheck time O that g members know. Our choice is motivated by the following two reasons.10

task Membership;var group: Time; members: set-of-P initially fg;joined: Boolean initially false;broadcast(\new-group", myclock + �);cyclewhen receive (\new-group", V)do if myclock > V then abort �;cancel(Broadcast);broadcast(\present", V, M)schedule(Broadcast, V + �) at V + � { �od;endcycle;task Broadcast (V: Time);if myclock > V then abort �;broadcast (\present", V, myid);schedule(Broadcast, V + �) bf at V + � { �;First, members of g do not have to communicate to j their next scheduled check time O.Second, they do not have to worry whether this information will get to j fast enough for jto be able to broadcast \present" at time O.4.2 Detailed description of the periodic broadcast membership protocolEach processor membership server is structured into two concurrent tasks as shown in Figure1. We refer to line m in �gure n as (n.m.).The Membership task is started on each processor after the local clock is �rst synchronized.It controls processor joins and processes "present" messages received from the communica-tion subsystem. It also has to respond to membership inquiries from clients and deal withmembership change noti�cations, as discussed in Sect. 3, but for simplicity the code dealingwith membership inquiries and change noti�cations is omitted from Fig. 1.The Broadcast task broadcasts \present" messages for scheduled membership check times.The when construct 1.6 { 1.15 expresses nondeterministic choice: if both alternatives areenabled one is chosen at random. After each alternative execution, a new cycle 1.5{1.16starts. We assume that between a start and a subsequent suspension a task executes inmutual exclusion. Thus, the execution of command sequences such as 1.7{1.11, 1.13{1.15,and 1.18{1.20 is atomic with respect to synchronization. There is no requirement,however,that the execution of task commands be atomic with respect to failures i.e., a failure caninterrupt or delay their execution at any time.11

Programs are made independent from the processors they run on by the use of a standardfunction myid. When invoked from a program, this function returns the identi�er of theprocessor on which the program runs (e.g. 1.9). To simplify our description, we assume an\intelligent" communication subsystem that batches all \present" messages broadcast foridentical view times V into one message (1.12) containing V and the set M = MEMBERS(V) of processors who have broadcast \present" at V, instead of delivering all such messagesone by one. (It is straightforward to modify the message deliver tasks given in [CASD85] and[Cri90] to achieve this.) The tests (1.7, 1.18) detect task performance failures. The invoca-tion of abort commands (1.7, 1.18) transforms such performance failures into membershipserver crash failures. The cancel(A) command (1.18) cancels all previously scheduled startsof a task A.The removal of the null � assumption adopted for simplicity in section 4.1 introduces twokinds of complications. A minor one is in the computation of task start times and delays.For example, we have taken into account the existence of the � uncertainty on task startsby setting V + � - � as start deadline for Broadcast (1.10, 1.20) if we want this taskto broadcast a \present" message by time V + �. Similarly, if we want each member ofa group V to broadcast its �rst \present" message for check time V + � after it learnsthe membership of V, the initial requirement of � < � becomes � + � < �. A secondcomplication is the need to make sure that all joined replicated servers execute identicalsequences of actions despite random task scheduling delays. For instance, it would beunacceptable if a \new-group" message creating an unscheduled view time V0 is received ata moment when the Broadcast task is startable for some previously scheduled check time V,such that V { V0 < �. With a nondeterministic choice of which task to start among severalstartable tasks, it would be then possible for some joined membership servers to broadcast\present" messages for V and for some others not to broadcast such messages. This wouldresult in incorrect failure detections by time V + �, when each server p 2 P will assign(1.14) the value MEMBERS(V) to members(p). In particular, a server q who cancelledV because of its earlier processing of the (\new-group", V0) message could detect its ownfailure when it would process at V + � the \present" messages send by other servers fortime V! The task scheduling rules presented in Sect. 2.2 are thus essential for achievingagreement on view and membership check times among servers in the presence of randomtask scheduling delays. According to these rules, the reception of a \new-group" messagefor an unscheduled view time V0 (even within � time units from a check time V) can onlyhave the following consequences. If V > V0, the start of the Membership task before theBroadcast task at all servers results in the consistent cancellation of V. If V � V0 then noneof the previously joined servers cancels V, i.e. they all broadcast \present" by time V.4.3 AnalysisIt is not our intention to provide lengthy formal proofs of correctness for our protocols.This would make this (already long) paper even longer. Instead, we describe informally12

why these protocols work properly.Time is used to uniquely identify successive processor groups. Whenever a membershipchange is detected for some view or check time V (1.14), the atomicity and terminationproperties of atomic broadcast imply that the values assigned to the local variables group(p)and members(p) are V and MEMBERS(V), respectively. In this way, between the creationof two successive groups V and V0, any server p joined to V has its local variables group(p)equal to V and MEMBERS(V), respectively. Thus, our implementation satis�es require-ments (Ss) and (Sa). Since broadcasts are also delivered to their source processor, and thetest (1.13) ensures that processor p will not incorrectly join a group of which it is not amember, requirement (Sr) is also satis�ed. Requirement (Sh) follows from the terminationand atomicity properties of the atomic broadcast service used by a joining processor: theseproperties force all correct processors to agree on a new view time V as well as on the se-quence V + �, V + 2�, : : : of membership check times that might serve as group identi�ersuntil the occurrence of a new processor start event.Our implementation also satis�es the timeliness requirements (Tj) and (Td). For instance,consider a processor j that starts a join procedure (1.4) at time S, and an arbitrary processorp, so that both p and j stay correct past time S. If no other joins are started by otherprocessors after time S { �, j and p will receive a \new-group" message at times in theinterval [S + D, S + �]. Since by hypothesis j and p are correct, they will both broadcast\present" for the view time S + �. These messages will be received (1.12) by both p and jin the interval [S + 2D, S + 2�]. Processor j as well as processor p will then both becomejoined to the group S + � by time S + 2�. Consider now the other case when at leastanother processor started a join procedure in the time interval (S - �, S), and let q be aprocessor that started the join procedure at the smallest time in the above interval. It isthen possible that both j and p receive the \new-group"' message broadcast by q for a viewtime V < S + �. In such a case both p and j (and q as well) will broadcast \present" forview time V, and will join the group V at times smaller than S + 2�. This yields J = 2�as the worst case join delay.If a joined processor f fails immediately after broadcasting \present" (this can happen asearly as time V - 2� for a view time V created by a join), it will take in the worst case (i.e.no concurrent joins cause other view times smaller than V + �)2� + � time units until theoccurrence of the next scheduled membership check time O = V + �. This will be missedby f, i.e. f 62MEMBERS(O), so by time O + �, when each surviving server p detects thatMEMBERS(O) 6= MEMBERS(V), the failure of f is detected (1.4). Thus, the worst casefailure detection time is D = � + � + 2�.We assume D < R + J, that is � - � + 2� < R. In this way a surviving member p removesa failed processor f from members (p) before f can be reinserted.13

5 The attendance list membership protocolThe main drawback of the periodic broadcast protocol is that it requires n atomic broadcastsevery � time units, even when no failures or joins occur, where n is the cardinality of the\current" membership. To reduce message overhead in the absence of joins and failures,we now derive a second protocol that uses only n datagram messages every � time unitsto check for group stability. As in the sketch of the previous protocol, we �rst assume �= 0 and deal with the complications caused by a positive � only in the detailed protocoldescription.5.1 Sketch of the attendance list membership protocolJoin handling. Joins are handled exactly as in the \periodic broadcast" protocol.Failure handling. Consider that after starting at time S, a processor j causes the creation ofa new processor-group V = S + � with membership M = MEMBERS(V). By time C = V+ � all correct members of V know the new membership. To check that this membershipis still \current" � time units after the view time V, the members of V agree that one ofthem (e.g. the one with highest processor identi�er) will issue at membership check time O= V + � an \attendance list" to be circulated (by using datagram messages) to all groupmembers. We assume C < O, i.e. � < �, to allow the list originator the time to learn themembership of the group V before issuing the list. All group members must relay the listbefore it returns to the initiator. One way of passing the attendance list among membersis to arrange them in a virtual ring [LeL78, Wal82] and let each member m relay the list toits known successor n = next(m, M) on this ring, wherenext(m, M) � if m = max(M) then min(M) else min fp2M j m � pgIf all members of the group V are correct and no datagram service failures occur, eachmember must receive the list in the time interval [O - ", O +
] where
 � n � + " and n =jMEMBERS(V)j. If lists are stamped by their origination time O, late lists received afterO +
 because of performance failures can be detected and discarded. Since we assumereliable clocks, there is no need to check for \early" lists, which arrive before O - ".At membership con�rmation time E = O +
 each correct group member checks whetherit has accepted a recent attendance list with origin O greater or equal than E {
. (If
 + "� � several attendance lists can coexist in real-time.) If all group members have acceptedsuch lists, then the V membership is still current at time E. If at least one member p ofV detects at time E that the last accepted attendance list had an origin O smaller thanE {
, p concludes that either a processor or a datagram service failure has occurred. Todistinguish between these two cases, p initiates a join procedure by broadcasting a \new-group" message. If a processor f2members(V) has failed, f will be excluded from the new14

group E + � that this join will create. Once the new group is created, new rounds ofattendance list circulation will check the stability of its membership, until a subsequentjoin or failure, and so on. Note that, while in the periodic broadcast protocol, each checktime costs n atomic broadcasts, in the attendance list protocol each check time costs onlyn datagram messages. This can result in a signi�cant saving in steady state message tra�cin the absence of failures and joins. For example in a point-to-point network, the reductionis from n(n � d { n + 1) datagram messages every � time units to n datagram messagesevery � time units.The minimum number of messages necessary for checking stability of a group of size n is n.Indeed, if for a group of size n there were a protocol with only n { 1 messages, one of thegroup members, say x, would not have to send a message during a group stability check.If this hypothetical protocol assumes (optimistically) that no message from x means x iscorrect, then that protocol would violate the (Td) requirement, because it would not detecta failure of x. If the hypothetical protocol would (pessimistically) assume that x is downwhen it does not receive a message from it, and would create a new group of which x wouldbe excluded (even though x remains correct), then it would violate the (Ss) requirement thatno group changes should occur unless failures or joins occur. Thus, such a protocol cannotexist, and n is the minimum number of messages needed to check membership stability ina group with n members.Agreement on membership check times. As in the previous protocol, unscheduled view timescaused by processor joins cancel all membership check and membership con�rmation eventsscheduled before old processors learn of such joins.5.2 Detailed description of the attendance list membership protocolEach membership server is structured into 3 tasks: Membership, Membership-Check, andMembership-Con�rmation (Fig. 2). The Membership task controls the initial join of aprocessor and receives all arriving messages. The Membership-Check task periodically gen-erates attendance lists to check membership stability. The Membership-Con�rmation taskexamines in each joined processor the timely passage of these lists.A new state variable L (2.3) is used to record the origin time of the last accepted attendancelist (2.19). In a manner similar to that discussed previously, a positive constant � in
uencesthe computation of start and termination task deadlines (2.11, 2.29, 2.30). It also changesthe previously mentioned requirement � < � (imposed to let a list initiator learn themembership of a new group before circulating a list in that group) to a �nal requirementof � + � < �. 15

task Membership:var members: Set-of-P initially f ggroup: Time: L: Time initially { 1;joined: Boolean initially false;broadcast (\new group", myclock + �);cycle when receive (\new-group", Vdo if myclock > V then abort �;cancel (Membership-Check, Membership-Con�rmation);broadcast (\present", V, myid);schedule(Membership-Check, V + �) at V + � - �od;when receive (\present", V , M)do if : joined & (myid 2 M) then joined � true �;if members 6= M then members � M ; group � V �od;when receive (\list", O)do if myclock � O +
then L � O;if myid 6= max (members)then send (\list", O) to next (myid, members)�;�;od;endcycletask Membership-Check (O: Time);if myid = max (members) thensend (\list", O) to next (myid, members) �;schedule(Membership-Con�rmation, O +
 + �) at O +
;schedule(Membership-Check, O + �) at O + � - �;task Membership-Con�rmation (E: Time);if myclock > E then abort �:if L +
 + � < E then broadcast (\new group", E + �) �;
16

5.3 AnalysisThe upper bound on join delays J for the attendance list protocol is the same as for theperiodic broadcast protocol: J = 2�. However, the saving in steady state message overheadcauses an increase in the processor failure detection time. The worst case that can happenis that a processor f fails immediately after it has broadcast a \present" message for someview time created by a join (2.10) and no other joins or failures occur for a su�ciently longtime. If V is the last view time for which f has broadcast \present" before failing, then f'sfailure could have actually occurred as early as V - 2�. Assuming no joins or other failuresoccur until the next scheduled membership check time O = V + � (2.11), f will be unableto relay the attendance list timestamped O in time (2.27{2.28, 2.2.23). If by membershipcon�rmation time E = O +
 + � (2.29, 2.31) there still exists a correct member p ofV, p will detect that it missed this list (2.33) and will initiate a join procedure that willlead to the creation of a new processor-group (from which f is excluded) by time E + J.Thus between the moment a processor fails and the moment the failure is detected by allsurviving processors there can be a worst case delay of D = � +
 + 3� + J. (The detectionof f's failure will be faster if f fails after relaying an attendance list or other concurrentjoins or failures cause a view time to occur before E + �.) As for the �rst algorithm, weassume that the restart delay R for a failed processor and the join delay J are bigger thanthe failure detection time: D < R + J. This imposes the constraint: � +
 + 3� < R.6 The neighbor surveillance protocolThe attendance list protocol checks membership stability by requiring all members to relayan \attendance list" message. An alternative approach for checking group stability is tocheck for the stability of the \next" neighborhood relation de�ned in section 5.1 for all pairsof group members (n, next (n, M)). We denote \previous" the inverse of the \next" relation,i.e. previous (next(n, M), M) = n. We refer to processor next (n, M) as the successor of nin M, and to previous (n, M) as the predecessor of n in M.The \neighbor surveillance" protocol handles joins in the same manner as the previous twoprotocols. What is di�erent is failure handling. We brie
y sketch below how failures aredetected by assuming �rst a null �.After the creation of a new processor-group V, each member of V agrees to check whetherits predecessor is still correctly functioning at neighbor check time O = V + �. To let themembers of V learn who their neighbors are before checking whether these are still alive,we require � < �. At time O, each member sends a \neighbor" message | timestampedO | to its successor. In the absence of failures, each member receives such a messagebefore time O +
0 where
0 = � + ". A \neighbor" message that arrives after O +
0 isnot accepted. At neighbor con�rmation time E = O +
0, each member checks whether it17

has accepted a \neighbor" message with timestamp O greater or equal than E {
0. If allmembers receive such messages, then membership stability is con�rmed and a new neighborcheck time is scheduled for time O + �. If a member p of V detects that the last \neighbor"message it has accepted had an origin O < E {
0, then a processor or a datagram servicefailure has occurred. To distinguish between these two possibilities, p will | as in theattendance list protocol | initiate at time E a join procedure leading to the creation of anew processor-group E + � and to new periodic neighborhood stability checks. Because ofits great similarity with the attendance list protocol, we do not give a detailed descriptionof the neighbor surveillance protocol.6.1 AnalysisThe protocol has the same join detection delay constant J as the attendance list protocol.The main advantage of this protocol over the attendance list protocol is an improved worstcase single processor failure detection delay, which we derive below. Assume that a processorf departs at time T and no other failure or join occurs before time T0 = T + � +
0 + 3�.The failure of f will be detected by f's successor by time T0; this will initiate a join that willcause all other surviving group members to detect f's failure by time T0 + J. Thus, the worstcase delay for detecting a single failure is D1 = � +
0 + 3� + J. The worst case scenariofor multiple failures is the following. A processor n1 departs at time T { 2� immediatelyafter broadcasting \present" for a view time T caused by a join, the processor n2 succeedingn1 departs at some time in the interval (T + � { �, T + � +
0 + �) before detecting thefailure of its predecessor n1 but after sending its \neighbor" message for check time T +� to its successor n3, n3 departs before detecting the failure of n2, but after sending its\neighbor" message for check time T + 2� to its own successor n4, and so on. Such a chainof close failures of members n1, n2, : : :, nk of a group, where ni+1 = next(ni, M), leads to aworst case multiple failure detection delay Dk = k� +
0 + 3� + J, k � 1. This yields anupper bound on failure detection delay for any possible processor membership of D0 = (n {1)� +
0 + 3� + J. For large values of � and n, this can be worse than the D upper boundderived for the \attendance list" protocol.7 Why is a processor-group membership service useful?This section illustrates how one can implement a server-group membership service on top ofa processor-group membership service without adding any message overhead when no joinsor failures occur. We also sketch how the processor-group membership service helps solvetwo other problems: a service availability problem, and the problem of limiting communi-cation among replicated servers to group members only.18

7.1 Server-group membershipThe objective of a server-group membership (SGM) service is to let each member z of areplicated server team Z know the membership of the group of correctly functioning Zmembers. There can be several server teams Z, Z0, : : : . The SGM service gives any joiningserver z the identity of all other correct Z members, and subsequently noti�es z of any groupmembership changes. We brie
y sketch below how an SGM service can be implementedas an extension of a processor-group membership service. We assume that the operatingsystem of any processor p2P is capable of notifying the SGM server on p of the failure ofany server running on p.The global state of the SGM service is recorded in the \joined" \group" and \members"variables maintained by the underlying processor-group membership service and a new statevariable (or table) \S" of type Server � Team � Processor. The existence of an entry (z,Z,p)in S means \server z of team Z runs on processor p".When a SGM server on processor p learns that a local server z wants to join the group ofcorrect Z members, it atomically broadcasts a global SGM state update \z joins Z on p"to all SGM servers (including itself). When this message is received by an arbitrary joinedSGM server q, q inserts a (z,Z,p) entry in its local S table and noti�es all members of Zthat run on q of their group membership change. The SGM server on p also sends to z thecurrent Z membership. (A more complex protocol is needed if at join time, the local SGMserver would have to give z not only the membership of Z, but the entire global state of theZ group. We leave it to the interested reader to derive this protocol, by analogy with theSGM server join protocol given below.)The failure of a server z on processor p can either be explicitly noti�ed by z or implicitlynoti�ed by the operating system on p when it detects z's failure (in the latter case the SGMserver needs to consult S to �nd the team Z to which z belonged). When the SGM serveron p learns about the failure of z, it atomically broadcasts a global SGM state update \zdeparts Z on p" to all SGM servers. When this message is received by an arbitrary joinedSGM server q, q removes (z,Z,p) from its local S variable and noti�es all members of Zrunning on q of the failure of z.When a joined SGM server on a processor q detects the failure of a processor p, it interpretsthis as the failure of all servers running on p. The local table S on q contains enoughinformation to identify all servers that were running on p. For each such server z, the SGMserver consults S to determine the group Z to which z belonged, deletes (z,Z,p) from S, andnoti�es all local Z members of the failure of z.Finally, let us sketch how the SGM server on a newly started processor j joins an existinggroup of correctly functioning SGM servers. For simplicity, we assume a null � and leave itto the reader to analyze joins when � is positive. If the server starts the join at time T bysending a \new-group" message, it will create an unscheduled view time V = T + �. When19

this message is processed by an arbitrary other joined SGM server q at time V, q adds tothe \present" message that it broadcasts not only its identity (as discussed previously) butalso the value S(V) of its local S variable at time V The server j monitors all global SGMstate updates initiated at times between T and V by joined SGM members; let U be thesequence of these updates. If by time T + 2�, j does not receive any \present" message,it concludes that it is alone, joins a processor-group of size 1 with only itself as a memberand initializes S to the empty relation fg. Suppose by time T + 2� j receives at leastone \present" message containing a value S(V). This value is outdated if the sequence U ofupdates to S broadcast between T and V is not empty, so to compute the \current" stateof S at time V + �, j has to apply all updates in U to S(V) before assigning the resultingS(V + �) value to its local S variable. This concludes the join of j.Reliance on processor-group membership to detect processor failures and on operating sys-tem services to detect server failures leads to an e�cient server-group membership serviceimplementation: no periodic message exchange overhead for checking server-group stabil-ity is required other than the lower level overhead needed for solving the processor-groupmembership problem. Thus, an increase in the number of server-groups or the number ofservers does not cause the amount of periodic overhead to grow when the number of proces-sors remains constant. The solution given satis�es all the safety and timeliness propertiesdescribed for the processor-group membership service in section 3. In particular, if thereis a total order O on the server names of each team Z and any SGM server interprets thesimultaneous failure of any set of Z servers as a failure in that order, then SGM servers cantotally order all server join and server failure events in the system. Thus, at the server-grouplevel it is possible to have a total ordering over server-group state updates similar to thatmentioned for the processor-group membership abstraction.7.2 Service availability despite processor failuresWe de�ne this problem as follows: choose k processors from a group of n processors (n �k) to run a totally ordered set of k services S = (s1, s2, : : :, sk) for as long as there are atleast k correctly functioning processors in the network. For simplicity we assume that anyservice can be hosted by any processor and each processor has enough capacity to run onlya single service. Often the services are further partitioned into a subset of v vital services(v � k) and a subset of k { v non-vital services. Availability of all vital services is necessaryfor the system to be able to do any work. If some non-vital services become unavailable,the system goes into a \gracefully" degraded mode. The objective is to ensure that all vitalservices are available for as long as there are at least v working processors and that as manyof the other services are provided as working processors in excess of v. Non-vital servicesi, i > v, is considered more important than non-vital service si+j , j > 0. Examples ofcommon vital services are network recon�guration coordinator, central lock manager, namemanager, and primary host for an important database. Examples of less vital services arenetwork administrator, back-up host for a database service, and communication gateway to20

some other network. To avoid confusion, it is necessary that, at any instant in real-time,there be at most one processor providing a given service. Moreover, should a processorthat provides a certain service fail, another processor should start that service within ashort bounded time interval. If k = 1, this problem becomes a \continuous leader" electionproblem [GM82].A processor-group membership service allows the above problem to be solved quite simply(we assume in what follows that each time a processor-group change occurs at most oneprocessor joins or departs; we leave it to the reader to deal with the case when arbitrarysubsets of processors can join or depart simultaneously). If processor p joins a group ofsize j < k whose older members already provide a set S0 of services, it starts service min(S{ S0), otherwise, if j � k, p does nothing. If the failure of a processor p is detected whena new group g is created, then, if p was not running any service nothing must be done.Otherwise, if p was running a service si, and the size j of g is greater than k, the oldestmember of g without a service must start si. If v < j � k and i < j, the processor thatruns sj aborts sj and starts si. The above rules ensure that in any processor membershipof size j � v all vital services as well as the most important j { v non-vital services areavailable, and that processor failures cause a minimum number of service migrations. Sucha solution is superior to a static assignment of services to processors (that would rendera service unavailable as long as the processor statically assigned to it is down) or a staticprimary/back-up scheme where the crash of just two processors to which some vital systemservices are assigned (such as primary and back-up lock manager) can bring the entiresystem down despite the fact that all other network processors function correctly.7.3 Limiting group communication to members onlyConsider a group g of processors that must ensure the availability of a certain service s suchthat s can be correctly provided only when there exists at most one server for s (i.e. theco-existence of two servers for s would lead to a service failure). Suppose that at time Ta member p of g has to start s locally. If a performance failure prevents p from starting sin time, by time T + D, the surviving members of g will form a new group g0 from whichp will be excluded. For availability reasons, s will have to be started in the new group g0by another processor q. For availability reasons, s will have to be started in the new groupg0 by another processor q. If p is not equipped with timeliness checks that transform itsperformance failures into crash failures (such as those illustrated at (1.7, 1.18, 2.8, 2.32)),p might after time T + D broadcast a message that it has (�nally) started s. The membersof g0 must ignore this message to avoid confusion.To solve this (and other related problems), it is necessary to clearly de�ne the scope ofgroup communication. Communication other than join communication, as illustrated insection 7.1, must be restricted to established group members only. If all groups that canexist in time are uniquely identi�ed by distinct group identi�ers, these identi�ers can be21

used to �lter group messages. In our example, if all messages are stamped by the groupidenti�er to which their sender is joined, it is easy for all members of g0 to discard messagesstamped g coming from a member of a past group that is no longer a member of g0. Thesystematic stamping of group messages with group identi�ers together with rules for dealingwith message transmissions that overlap group transitions can prevent members of a groupfrom sending messages to, or receiving confusing messages from, outside the group.8 Optimizations and extensionsThis section discusses three optimizations that can be applied to all protocols given, aswell as a possible hierarchical extension of the attendance list protocol that can handle anincreased number of processors.A straightforward optimization that will lead to better failure and join delays consists ofmerging the membership layer presented in this paper and the atomic broadcast algorithmsdiscussed in [CASD85] and [Cri90] into a single layer. The elimination of communicationbetween a lower broadcast layer and an upper membership layer will save several �'s fromthe join and failure processing delays given previously. A second optimization relies onthe observation that, at each view time, all members broadcast \present" messages for asame view time V within a short real-time interval of length ". The message di�usionscorresponding to these broadcasts can be \merged" so as to reduce the total number ofexchanged messages if the following di�usion optimization rule is followed: a processor pshould send a message containing some information I to a neighbor n only if p is not surethat n knows I. One way of enforcing this rule is to record on each \present" message di�usedfor view time V that carries information I the identity P(I) of all processors that know I. Aprocessor will then relay a \present" message for view time V that carries information I onlyto those neighbors that are not in P(I). A third optimization prevents excessive messagetra�c that could be caused by a processor that crashes and restarts frequently. To preventsuch tra�c, it is possible to associate with each processor in the network the set of its lastjoin times and to check at each join whether the processor is not a \frequent joiner".When the number n of processor-group members becomes signi�cant, it becomes undesirablefor all processors to send messages at the same clock times, especially in a system with asmall maximum deviation between clocks ". In such a case, one can spread the messagetra�c by using a technique called \staggering". The main idea behind staggering is asfollows. Let k be the rank of a member p of a processor-group g, where k is de�ned as therelative position of p on the \next" virtual circle associated with g as described in section 5.1,starting with the member with the greatest processor identi�er. If a membership protocolrequires p to send a message at some time T, the \staggered" protocol will require p tosend the message at T { ks, where s is a staggering time constant, chosen greater than "to ensure a proper dispersion of message tra�c. Since staggering can lead to an increase22

in the membership check period �, it can worsen the bounds on failure detection delays.Often the resulting increase is more than compensated by the elimination of membershipprotocol related tra�c spikes.The membership protocols presented do not scale well to large point-to-point networks,because of the number of messages broadcast when membership changes occur. The de-sign of protocols that provide bounded membership change detection delays in the presenceof concurrent failures and joins and that scale well for large point-to-point networks is achallenging problem. In an internet composed of several smaller networks, one naturalsolution to this problem is to use local attendance list protocols to determine the member-ship and the leader for each small network, and to let these leaders participate in a globalleader attendance list protocol at the internet level. A leader can then report any changein the membership of its own small network by piggybacking it on the global attendancelist. These changes can then in turn be propagated by all the other leaders into their ownsmall networks. This 2-level hierarchy can, of course, be generalized to a k-level hierarchy.Such hierarchical schemes provide bounded crash and join processing delays and requireless message tra�c to process membership changes than a brute force 1-level attendancelist protocol run on the entire internet. The cost is an increase in protocol complexity andin join and crash detection delays.9 ConclusionThis paper has speci�ed the processor-group membership problem and has provided threesimple protocols for solving it in synchronous networks. The �rst protocol provides thefastest failure detection time, but can have a signi�cant message overhead even when nofailures or joins occur. The second and third protocols have a minimum message overheadin the absence of failures and joins. If failures are rare, the detection time provided bythe third protocol is the best. However, if failures can cluster in time, the second protocolprovides a better upper bound on failure detection times than the third.The processor-group membership problem is a fundamental problem in distributed fault-tolerant system design in that it allows many other problems to be easily solved. Weillustrated how a processor-group membership service helps to solve the server-group mem-bership problem, a service availability problem and the problem of restricting group com-munication to group members only. A membership service is also useful in solving otherproblems, such as load balancing and enforcing service group replication strategies for var-ious system services [Cri91]. Indeed, processor joins and failures are signi�cant events fora load balancer or a service availability manager and a processor membership service thatreliably noti�es such programs of joins and failures considerably simpli�es the design ofsuch subsystems.When this paper was �rst published [Cri88], we knew of no other publications that dis-23

cussed the processor membership problem in synchronous networks. Since then, anothersynchronous membership protocol for Time Division Multiplexing Access (TDMA) basedbroadcast networks was published [KGR91]. Although Kopetz, Gr�unsteidl and Reisinger donot formally state the properties that their protocol possesses, if one interprets TDMA cyclenumbers as measuring a global system time and uses cycle numbers to uniquely identifyprocessor-groups, one realizes that the properties that their protocol satis�es are basicallythe same as the safety and timeliness properties discussed in this paper. The protocol of[KGR91] achieves agreement on local membership views by assuming what one might call\quasi-atomic" broadcast channels: for any message m sent by a processor on a channel,either (1) all correct processors receive m, or (2) no correct processor receives m, or (3)exactly one correct processor does not receive m. If channel failures could cause at leasttwo correct processors to miss a message received by some correct processor, the agreementproperty on membership views can be violated. The protocols presented in this paper arenetwork independent: they can be implemented in both point-to-point and broadcast syn-chronous environments. When implemented in a broadcast environment, our approach doesnot rely on the existence of quasi-atomic channels: the protocols described in [Cri90] achieveatomic broadcast even when faulty channels are allowed to deliver messages to arbitrarysubsets of correct processors.All other processor-group membership protocols that we know assume an asynchronouscommunication network in which partition failures can occur [BJ87, Car85, CM84, ASC85,KLW86], and [Wal82]. These acknowledgement-based, asynchronous protocols do not guar-antee any bound on processor failure detection and processor join delays even when runin an environment where all delays are bounded. Progress in reaching agreement on newprocessor-group memberships and learning about new processor failures and joins can bein�nitely delayed by appropriately chosen sequences of events such as joins, omission com-munication failures and processor crash failures. On the other hand. asynchronous protocolssuch as the ones described in [CM84] and [ASC85] can be designed to satisfy safety require-ments such as (Sa) and (Sh) even when partitions occur. However, to ensure these propertiesin the presence of partitions, these protocols require that at any time there be at most oneprocessor-group authorized to carry on work. This is achieved by requiring that a majority(or a quorum) of processors be in a group of processors before that group can do any workfor system users. Thus, while asynchronous protocols are safe but not timely, synchronousprotocols are always timely, but are only safe in the absence of partitions. For example, if apartition occurs while a correct processor di�uses a \present" for some membership checktime T, some correctly functioning processors might not receive the message by T + � whileothers might receive it. This will lead to divergent views on membership, in violation ofrequirements (Sh) and (Sa). There exist known approaches (see for example [SSCA87]) fordetecting and reconciling processor views computed by using synchronous protocols afterpartition occurrences, but such \optimistic" approaches cannot be used in applications inwhich one cannot compensate for the actions taken by certain processors when their localviews were inconsistent with the views of other processors.24

One is thus currently faced with the following dilemma. Either adopt a synchronous ap-proach, which guarantees bounded response times in the presence of any sequence of failuresand joins, can continue to work for as long as there exists at least one working processor inthe system, but can violate its safety requirements when communication partitions occur,or adopt an asynchronous approach that never violates safety requirements such as (Sa)and (Sh), even when communication partitions occur, but requires the presence of a major-ity (or quorum) of correct processors before any work can be done, and cannot guaranteeany bounded response times. Whether one can design protocols that are always safe, aretimely in a synchronous environment and are untimely only when run in an asynchronousenvironment is an open problem.Acknowledgements. Comments from Jean Raymond Arbrial, Houtan Aghili, Danny Dolev, JoeHalpern, Michael Raynal, Shri Sabnis, Frank Schmuck, Dale Skeen, Jim Stamos, Ray Strong, MosheVardi, Pierre Wolper, and the Referees helped clarify my understanding of the membership problem.This research was partially sponsored by IBM's System Integration Division as part of a FAASponsored project to build a new air tra�c control system for the US.References[ASC85] A. Abbadi, D. Skeen, and F. Cristian. An e�cient fault-tolerant protocol for replicateddata management. In SIGACT/SIGMOD, 1985.[BJ87] K. Birman and T. Joseph. Reliable communication in the presence of failures. ACMTransactions on Computer Systems, 5(1):47{76, Feb 1987.[Car85] R. Carr. The Tandem global update protocol. Tandem Systems Review, Jun 1985.[CAS86] F. Cristian, H. Aghili, and R. Strong. Approximate clock synchronization despite omis-sion and performance failures and processor joins. In Proceedings of the 16th InternationalSymposium on Fault-Tolerant Computing, pages 218{223, Wien, Austria, Jun 1986.[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple messagedi�usion to Byzantine agreement. In Proceedings of the Fifteenth International Sympo-sium on Fault-Tolerant Computing, pages 200{206, Ann Arbor, MI, Jun 1985.[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions onComputer Systems, 2(3):251{273, Aug 1984.[Cri88] F. Cristian. Agreeing on who is present and who is absent in a synchronous distributedsystem. In Proceedings of the Eighteenth International Conference on Fault-tolerant Com-puting, pages 206{211, Tokyo, Jun 1988.[Cri90] F. Cristian. Synchronous atomic broadcast for redundant broadcast channels. The Jour-nal of Real Time Systems, 2:195{212, 1990.[Cri91] F. Cristian. Understanding fault-tolerant distributed systems. Communications of ACM,34(2):56{78, Feb 1991.[GM82] H. Garcia-Molina. Elections in a distributed computing system. IEEE Transactions onComputers, C-31(1):49{59, Jan 1982.25

[KGR91] H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in asynchronous distributed real-time system. In A. Avizienis and J.C. Laprie, editors, De-pendable Computing for Critical Applications, pages 411{429. Springer-Verlag, Wien,1991.[KLW86] N. Kronenberg, H. Levy, and Strecker W. Vax clusters: a closely coupled distributedsystem. ACM Tr. on Computer Systems, 4(2):130{146, 1986.[Lam84] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACMTransactions on Programming Languages and Systems, 6(2):254{280, 1984.[LeL78] G. LeLann. Algorithms for distributed data-sharing which use tickets. In Proceedingsof Third Berkeley Workshop on Distributed Data Management and Computer Networks,pages 259{272, Berkeley, CA, Aug 1978.[SSCA87] R. Strong, D. Skeen, F. Cristian, and H. Aghili. Handshake protocols. In Proceedings ofthe Seventh International Conference on Distributed Computing Systems, pages 521{528,Berlin, Sep 1987.[Wal82] B. Walter. A robust and e�cient protocol for checking the availability of remote sites. InProc. 6th Berkeley Workshop on Distributed Data Management and Computer Networks,pages 45{67, 1982.

26

