Reaching Agreement on Processor Group Membership in
Synchronous Distributed Systems*

Flaviu Cristian
Computer Science and Engineering
University of California, San Diego

La Jolla, California 92093-0114

flaviu@cs.ucsd.edu

Abstract

Reaching agreement on the identity of correctly functioning processors of a dis-
tributed system in the presence of random communication delays, failures and proces-
sor joins is a fundamental problem in fault-tolerant distributed systems. Assuming a
synchronous communication network that is not subject to partition occurrences, we
specify the processor-group membership problem and we propose three simple proto-
cols for solving it. The protocols provide all correct processors with consistent views

of the processor-group membership and guarantee bounded processor failure detection
and join delays.

Key words: Communication network — Distributed system — Failure detection —
Fault tolerance — Real time system — Replicated data

1 Introduction

When designing a computing service that must remain available despite component failures,
a key idea is to replicate service state information at several servers running on distinct pro-
cessors. The service state typically consists of the server-group membership, that is, the set
of all correctly functioning servers that cooperate to provide the service, and service specific
state information, such as the queue of service requests accepted and not yet completed,
the current assignment of work to various active servers, and the state of the physical re-
sources used to provide the service. Server replication lets a service be highly available
despite processor or server failures. Indeed, once the surviving servers detect the failure of

*published in Distributed Computing, Vol. 4, pp. 175-187, 1991

some of their peers, they have enough state information to redistribute among themselves
the workload handled by the failed servers. However, replication creates problems that do
not exist in non-redundant systems. Perhaps the most difficult new problem is achieving
agreement among replicated servers on a global service state despite random information
propagation delays, component failures, and server joins. Such agreement is necessary if
the goal is to make a replicated server-group behave as a single logical server rather than
as a group of autonomous processes.

Earlier papers have investigated fault-tolerant protocols for agreeing on service specific
global states in replicated server-groups whose membership can decrease but not increase
[CASDS&5, Cri90]. This paper focuses on the problem of reaching agreement on the mem-
bership of dynamic server-groups that can shrink with failures and grow with joins. We
break down this goal into two sub-goals. First, we show how to achieve agreement on the
identity of all correctly functioning processors that can execute server processes. We refer
to this first problem as the processor-group membership problem. Second, assuming the
processor-group membership problem solved, we show how to solve the server-group mem-
bership problem. The solution to the latter problem shows how to maintain agreement on
the global state of a server-group when server joins cause the group membership to increase.

We begin by describing our system model and failure assumptions and by specifying the
processor-group membership problem. The clear isolation and precise specification of this
problem is a key contribution of the paper. Another contribution is the description of
three protocols for solving the problem. The first protocol provides fast processor failure
detection but can require significant message traffic overhead, even when no failures occur.
To reduce this overhead, we derive two other protocols which have a (provably) minimal
message overhead in the absence of failures, but that provide longer failure detection delays.
The simplicity of these three protocols compares favorably with the complexity of earlier
known solutions to the membership problem [BJ87, Car85, CM84, ASCR5, Wal82].

The membership problem is a fundamental problem of distributed computing, like routing,
clock synchronization, atomic broadcast, or atomic commit, in the sense that once solved, it
allows easy solutions to other important problems encountered when designing fault-tolerant
distributed applications. To illustrate this point, we show how a processor membership
service helps solve the server-group membership problem, the problem of ensuring high
availability of computing services in a distributed system, and the problem of precisely
defining the scope of server-group communication. We also examine some optimizations
and possible extensions to our three algorithms. We conclude by comparing our approach
with other published approaches.

2 System model and failure hypotheses

We consider a system consisting of distributed server processes running on processors linked
by a physical network. There is total order “<” on the set P of processor identifiers.
Fach processor consists of hardware (CPUs, I/O controllers, storage, clock, and so on)
and software (operating system, communication subsystem, etc). The operating system
supports process execution. The communication subsystem accepts messages from, and
delivers messages to, processes, manages message queues, and drives the physical network
links. Collectively, the communication subsystems provide the distributed processes that
run at various processors the abstraction of a communication network. The communication
subsystems are the nodes of this network.

2.1 Synchronous Communication Network

Among the communication services that we assume the network provides, the simplest is a
datagram service. This service provides a cheap means for any process to send a message
m to any other process. This works as follows: the source process entrusts m to a network
node p, the node p sends m along a single physical route to another node ¢, and q delivers
(that is, makes available) m to the target process. We do not make any assumption about
the topology of the network. It can be point-to-point or based on broadcast channels,
such as token rings or busses. If it is not fully connected, we assume the nodes implement
message forwarding. Neither do we make any assumption on datagram message transmission
protocols. For instance, a datagram message might be broken down into, and transmitted
as, a sequence of datagram packets, and lost packets might be retransmitted a finite, a priori
known, number of times before a message is considered lost. Between the acceptance of a
datagram message m by a source node p and the moment m is delivered to the destination
process by the target node q, there is an arbitrary random delay. To avoid waiting forever
for packets that will never arrive, there is a need to decide on a timeout delay d, such
that a datagram message that travels more than d time units between node p and node
q is considered lost. Such timeout delays are introduced by system designers to prevent
situations in which a process A waits forever for a message from another process B that will
never arrive (for example, because of B’s failure). Datagram timeout delays are established
by studying statistics about network behavior under various load patterns, so as to ensure
that node-to-node datagram message transmission delays are smaller than d with very high
probability.

The adoption of a bound d on datagram message delays divides datagram service behaviors
in two classes: correct behaviors and failures. The datagram service provided by two
network nodes p and q is correct if any datagram message m accepted at p for a target
process at q is delivered to that process by q within d time units. A datagram omission
failure occurs if m is never delivered at q, while a performance failure occurs if m is delivered

after d time units [CASD85]. There can be many causes for such failures. One is that the
physical packets used to transmit messages were (repeatedly, if low level re-transmissions
are implemented) corrupted and discarded. Another is that a buffer overflow occurred at
the target node. Yet another cause is a slow processing of datagram packets at the source
or target communication subsystems, due to randomly occurring excessive network load
conditions.

We assume that the datagram service can only suffer omission or performance failures.

In addition to the datagram service, we assume the communication network also provides
a diffusion service. A node p diffuses a message to another node q by sending diffusion
packets in parallel on all physically independent routes between p and q. In point-to-
point networks, diffusion can be implemented as discussed in [CASDS85], while in networks
based on redundant broadcast channels (e.g. rings, busses) diffusion can be implemented
as reported in [Cri90]. We assume that there is some arbitrary, but fixed bound F on
the number of communication components (nodes and links) that can be faulty during
a diffusion, and that the network possesses enough redundant independent physical links
between any two pairs of nodes (p, q), so that a node q always receives at least one copy of
each packet diffused by another node p despite up to F faulty communication components.
We also assume that the rate at which diffusions are initiated is bounded, that this rate is
smaller than the rate at which nodes can receive and process diffusion packets, and that
the communication subsystems are properly dimensioned to provide enough buffer capacity
as well as bounded processing delays for diffusion packets under worst case network load
conditions (typically, diffusion packets have higher priority than any other type of packets).
Under the above assumptions, any message m diffused by a correct node p is always received
and processed at another correct node q within a known network delay N (which is a function
of I, network topology, and the worst case transmission and processing delay for diffusion
packets [CASDS85, Cri90]). We call a communication network diffusion-synchronous (or
simply synchronous) if it ensures that any diffusion message entrusted to a correct node is
received and processed by all correct nodes within N time units. The characteristic property
of a synchronous network is that communication partitions which can prevent correct nodes
from diffusing information to each other within N time units, do not occur. Thus, in a
synchronous network, the only reason why two nodes cannot communicate by using the
network message diffusion service is the failure of at least one of them.

A synchronous communication network enables processor clocks to be synchronized. We
assume that processor clocks are reliable, monotonic (successive readings yield strictly in-
creasing values), run within a linear envelope of real-time and show at any real-time values
within a known constant maximum deviation ¢, which is a function of the network delay
N, and the re-synchronization period [CAS86]. Synchronized clocks allow us to reason in
terms of global system clock time, instead of real time. Throughout this paper “time”
means “clock time”. For instance, phrases such as “message m takes at most d time units
between p and q” and “processes p, q broadcast message m at time 77 mean “the delay

experienced by m between p and q as measured on any processor clock is at most d” and
“p broadcasts m when its local clock displays time T and q broadcasts m when its clock
displays 17, respectively.

A synchronous communication network also enables the implementation of a synchronous
atomic broadcast communication service [CASDS85, Cri90]. Synchronous atomic broadcast
protocols ensure, for some time constant D that depends on N and ¢, the following prop-
erties. If a node attempts to broadcast a message m at time 7, then at time T + D either
all correct nodes deliver m or none of them delivers m (atomicity). All messages delivered
are delivered in the same order at each correct node (order). If the sending node of m is
correct, then all correct nodes deliver m at 7'+ D (termination). Since in this paper atomic
broadcast is the only primitive used for broadcasting information, when we say ”broadcast”,
we mean “atomic broadcast”.

Although the description of our solutions to the membership problem relies on the exis-
tence of lower level clock synchronization and atomic broadcast network services, it should
be clear these lower level protocols are just used as "structuring tools” to shorten our pre-
sentation. The only essential assumption made is that of a synchronous communication
network. Protocols for implementing these lower level services in synchronous communica-
tion networks in the presence of an arbitrary, but fixed number F of faulty components that
can suffer crash, omission and performance failures have been described in previous publica-
tions: [CAS86] describes a diffusion based clock synchronization protocol, while [CASDS85]
and [Cri90] describe diffusion and clock synchronization based atomic broadcast protocols
for point-to-point and broadcast networks.

The reliable communication achieved by using diffusions to broadcast information comes
with a price. While datagram messages are cheap, the diffusions used for atomic broadcast
can be expensive. For example, in a point-to-point network, each atomic broadcast costs
approximately n X d — n 4+ 1 datagram messages, where n is the number of correct nodes
and d is the average node degree, i.e. number of neighbors of a node [CASDS85]. Similarly,
the protocols of [Cri90] require F x n + 1 datagram messages to atomically broadcast
information despite up to I processor performance failures (when only processor crash
failures can occur, the number of messages in the absence of failures is I' + 1).

2.2 Task Scheduling Rules

The datagram, clock synchronization and atomic broadcast services provided by the com-
munication network are accessible to processes running under operating system supervision.
Such processes can be structured into several parallel tasks (or threads). To explicitly start
a task A with input parameters X at time T, the operating systems running on network
processors provide a ”schedule (A, X) at 17 primitive. A correct operating system inter-
prets an invocation of this primitive as follows. If the invocation is made at a time 77 after

the task start deadline T, A is not started. Otherwise, if Tt < T, A is started with input
parameters X at a time in the interval [T, T + n), where 5, the maximum task scheduling
delay is a positive constant. Several invocations of schedule (A, X) at T with identical
parameters X made at times smaller than 7 result in just one start of A with parameters
X. Task execution can be suspended, for instance, when a task waits for messages. Let B be
a task suspended because it waits for a message m. If m is delivered by the communication
subsystem at time 7, a correct operating system interprets T as a start deadline for B,
i.e. the system starts B in the interval [T, T 4 7n). We assume that tasks scheduled to
be started at different times are started in the order of their start deadlines. For example
if tasks A and B of a process are startable in the intervals [T, T + n) and [17, 11 + n),
respectively where T < T¥, then A is started before B. If two tasks A and B have a common
start deadline T, we assume they are started in some arbitrary, but fixed, order, known to
all operating system instances on all processors. For example, if tasks are uniquely identi-
fied by alphanumeric identifiers, such an order can be the lexicographic order on character
strings. This is the total order on task identifiers assumed in this paper.

We assume that an operating system never violates the ordering rules on task start events
given above. However, due to excessive load conditions, a system might experience delays
longer than 7 between the occurrence of task start deadlines and task starts. Like the d
constant, the i constant is determined empirically, by studying statistics on task scheduling
delays under various load conditions, so as to ensure that an event which occurs at time
T results in the start of the task waiting for it by time T + 5 with high probability. An
operating system that starts a task startable at time T at a time beyond T + 5 suffers a
performance failure. Such operating system performance failures cause task (and hence pro-
cess) performance failures. A process crash occurs either because the underlying operating
system crashes or because the execution of a process command results in an unanticipated
exception that causes the underlying system to abort the process. An operating system
crashes when the handler of an exception detected during its execution terminates with
an abort command. The invocation of this command triggers the execution of a predefined
sequence of system restart commands. Similarly, a process abort (whether explicitly invoked
from a process task or by the underlying operating system) prevents the process from re-
acting to all events that occur process restart. After a process p crashes there is minimum
restart delay R: if the crash occurs at time T, p does not resume correct operation before

time T + R.
We assume that processes can only suffer crash and performance failures.

Since in a typical system the constants d and » are at least two orders of magnitude greater
than the time needed to consume and process a message by a short non-interruptible task,
to simplify our presentation we ignore message processing times: we assume that once a
task is started, it completes in zero time units. That is, on a correct processor, a task
startable at time T starts and completes in the interval [T, T 4+ n). (The very short non-
interruptible tasks to be described later are consistent with this assumption.) Note also that

the 1 uncertainty on task (and hence, process) scheduling delays introduces a new bound §
=n+ d + 7 on process-to-process datagram message delays. The first term represents the
upper bound on the random delay between the moment a process sends a message and the
moment the message is accepted by the source node, the second is the upper bound on the
node to node delay, and the third is the upper bound on the delay between the target node
and the target process. In a similar manner, we denote by A = n + D + 5 the bound on
process-to-process atomic broadcast delays.

3 The processor-group membership service

To enable any client process on any correct processor of a synchronous distributed system
to use the processor membership service, this service is implemented by a group of server
processes replicated on all processors of the system. As far as the processor-group service
is concerned, processors are represented by the membership servers that run on them. The
failure of such a server is interpreted as the failure of its underlying processor. Because
of this one-to-one correspondence, we equate membership servers and processors in what
follows. We denote P by the set of correct membership servers, and adopt the convention
that we refer to “correct servers” simply as “servers”. We use the qualifying adjective
“failed” only when talking about failed servers.

The service provided by membership server p € P is as follows. When a local client process
¢ declares an interest in knowing the processor membership, p gives ¢ the membership of
the current processor group and then notifies ¢ of any subsequent membership changes
in a timely manner. Such notifications are sent to ¢ until either ¢ declares that it is no
longer interested in receiving them or the failure of ¢ is reported to p by the underlying
operating system. The management of the set of local clients interested in membership and
the mechanics of their notification when membership changes occur are straightforward
and will not be explicitly mentioned in what follows. Instead, we focus only on the difficult
problem of maintaining consistent knowledge of the processor-group membership at each
correct processor.

New processor-groups are created in response to either processor starts or failures. A
processor start occurs either when a processor restarts after a failure or a shut-down or when
a new processor is added to a system. To simplify our presentation, we equate a voluntary
processor shut-down, for example for maintenance reasons, with a processor failure. At
any point in real-time, we require a processor to be joined to at most one group. There
exist times at which a processor might not be joined to any group, for example, between
its start and the moment the processor joins its first group. To unambiguously designate
the different processor-groups that might exist in time, we uniquely identify each group by
a unique processor-group identifier g (some reasons for this requirement are discussed in
section 7.3). Let G denote the set of all possible processor-group identifiers. We denote by

joined: P — { true, false }

the (total) predicate that, for any processor p, is true when p is joined to some group and
is false when p is not joined to any group. A processor not joined to a group cannot take
part in any coordinated group activity. Let

group: P — G

be the (partial) mapping that records the group to which a processor is joined, when it is
joined, i.e. if joined(p) then group(p) yields the identifier of the group joined by p. Let
furthermore

members: P — Set-of-P

be the (partial) mapping that records a processor’s view of the membership of the group to
which it is joined, when it is joined, i.e. if joined(p) is true, then members(p) yields p’s view
of the membership of group(p). The value of the above mappings varies with time. However,
to keep our presentation simple we decided not to mention the time domain explicitly.

We require a processor-group membership service to satisfy the following safety require-
ments:

(Ss): Stability of local views. After a processor joins a group, it stays joined to that group
until a failure is detected or a processor start occurs.

(Sh): Agreement on history. Let p and q be processors correct throughout a certain time
interval. If during that interval, p and ¢ are joined to a common group g; and the next
groups joined by p and q after leaving g1 are g, and go’, respectively, then g2 = ¢5.

(Sa): Agreement on group membership. If two correct processors p and q are joined to the
same group, that is joined(p) & joined(q) and group(p) = group(q), then the two processors
have the same view of the membership of that group: members(p) = members(q).

Because of this property, we let members(g) denote the view common to all members of a
group g. When requirements (Sa) or (Sh) are violated, different group servers that depend
on a processor membership service can perform inconsistent operations on the replicated
data they manage, leading to inconsistent replicas. The easiest way to achieve (Sa) would
be to set the views of all processors to the empty set. To avoid such trivial solutions, we
require that a processor p that has joined a group be a member of that group:

(Sr): Reflexivity. If joined(p) then p € members(p).

While (Sr) rules out the trivial solution of setting all processor views to the empty set,
it does not rule out the equally trivial solution of setting them all to the total set of all
processor. To make the views of group members be as close as possible to reality, we require
that a processor-group membership protocol satisfy some timeliness requirements. First,

we require that there be an upper bound J (for join delay), on the delay that can elapse
between the start of a processor j and the moment j joins a processor-group, even when
other failures or joins occur concurrently with j’s join:

(Tj): Bounded join delays. There exists a time constant J such that, if a processor j starts
at time 7T and j stays correct until time T + J, then by T 4 J the processor j joins a group
that is also joined by each other processor that was correct throughout [T, T + J].

Note that all processors that were correct between T and the join completion time are
required to join the same group as the newcomer. In this way, any two correct processors
are forced to agree on the identifier of the group resulting from the join.

Second, we require that there be a bound D (for failure detection delay) on the time needed
to detect processor failures:

(Td): Bounded failure detection delays. There exists a time constant D such that, if a
processor f joined to a group g fails at time T, then each member of g that stays correct
throughout [T, T+ D] joins by T'+ D a group g/ such that f¢members(gf).

We require this property to hold despite any number of other failure and join events that
could occur concurrently with the failure of f. The (Td) property lets surviving processors
automatically distribute among themselves the workload of any departing processors within
a bounded time. For systems that have to meet hard real-time deadlines — even when
component failures and joins occur clustered in time — this requirement is essential.

Note. The requirements above imply the following essential property: after a processor p
starts and joins a group g that has at least another member ¢, both p and q will see the
“same” sequence of membership changes for as long as both remain correct. More precisely,
if p and q stay correct from joining g until some time T and p sees a certain sequence of
membership changes by time T-maz(J, D), then q sees the same membership changes in
the same order by time 7. This property, together with the total order on the delivery of
group atomic broadcast messages (that can be used by correct processors to convey system-
specific state updates to the other correct processors) enable all events that affect the state
of a system to be seen by all correct processors in the same order. This total event ordering
can substantially simplify the programming of replicated fault-tolerant services [Lam84].

4 The periodic broadcast membership protocol

We begin our presentation of membership protocols by introducing a simple ”periodic broad-
cast” protocol. In sketching it, we first make the simplifying assumption that », the bound
on task scheduling delays, is 0. We relax this assumption later when we present the protocol
in more detail.

4.1 Sketch of the periodic broadcast membership protocol

Join handling. A membership server j that starts at time S invites the other servers to
form a new group by broadcasting a “new-group” message timestamped 5. This message
is received by an arbitrary correct server p € P by time V = 5 4+ A. In response to a
“new-group” message, each server p € P broadcasts a “present” message that contains its
identifier and indicates its willingness to join a new group. We call the set of servers that
broadcast “present” messages for time V the processor membership as of view time V and
denote by MEMBERS(V) this set. The atomicity and termination properties of atomic
broadcast ensure that any two servers p, q € P and are correct during [V, V + A] receive
at time C'= V 4+ A the same set of “present” messages, and hence, can compute at C
local membership views members(p) and members(q) equal to MEMBERS(V). Since all
such servers agree on V and MEMBERS(V), we use V as (unique) identifier for the new
group with membership MEMBERS(V). After a server p computes (at C) the membership
of the group V, pp leaves the group (if any) to which it was previously joined, and joins V.

Failure handling. While a server that starts can alert its peers about this event, a failed
server f cannot tell the surviving members of its group that they should form a new group
without it. In such a case, the passage of time is used to trigger after f’s failure the
formation of a new group from which f is excluded. This can be implemented by letting
each member p of a group V check that, 7 time units after the view time V| its view of
the membership is still consistent with reality. For simplicity we require 7 > A, to let p
learn the membership as of view time V before it checks it for “currentness”. (It is possible
to design membership protocols for 7 < A, but their analysis is somewhat more complex.)
One simple way of checking that the membership at time V 4 7 is still the same as that
at time Vis to let all members of the group V broadcast at membership check time O =
V + 7 “present” messages. If at membership confirmation time O + A a member p of V
detects that some femembers(p) is not in MEMBERS(V + 7), then — by the atomicity
and termination properties of atomic broadcast — all surviving members q of V detect at
O + A that fe MEMBERS(V + 7). When a surviving member q detects such a failure,
it joins a new group V + 7 with MEMBFERS(V + 7). Whether membership changes are
detected or not, each surviving processor ¢ schedules a new membership check time Or = O
+ 7 to check again the currentness of its view of the membership. This method effectively
imposes a discrete sampling of the continuously changing processor membership reality into
a sequence of snapshots taken at V, V 4+ m, V 4 27, etc.

Agreement on membership check times. Let g be a processor-group with next membership
check time O = g + km, for some integer k, and consider that a join initiated by a processor
j results in a new group V, O — 7 < V < O. What membership check time should exist for
the new group V that will be created? The check time O scheduled in the old group g or
a new check time V + 77 We choose the new check time. In this way, the join of j leads
to the creation of an unscheduled check time V + 7 that cancels the previously scheduled
check time O that g members know. Our choice is motivated by the following two reasons.

10

task Membership;

var group: Time; members: set-of-P initially {};
joined: Boolean initially false;

broadcast(“new-group”, myclock + A);

cycle

when receive (“new-group”, V)

do if myclock > V then abort fi;
cancel(Broadcast);
broadcast(“present”, V, M)
schedule(Broadcast, V+ 7) at V+ 7 —n

od;

endcycle;

task Broadcast (V: Time);

if myclock > V then abort fi;

broadcast (“present”, V, myid);
schedule(Broadcast, V4) bf at V+ 7 — n;

First, members of g do not have to communicate to j their next scheduled check time O.
Second, they do not have to worry whether this information will get to j fast enough for j
to be able to broadcast “present” at time O.

4.2 Detailed deseription of the periodic broadcast membership protocol

Each processor membership server is structured into two concurrent tasks as shown in Figure
1. We refer to line m in figure n as (n.m.).

The Membership task is started on each processor after the local clock is first synchronized.
It controls processor joins and processes "present” messages received from the communica-
tion subsystem. It also has to respond to membership inquiries from clients and deal with
membership change notifications, as discussed in Sect. 3, but for simplicity the code dealing
with membership inquiries and change notifications is omitted from Fig. 1.

The Broadcast task broadcasts “present” messages for scheduled membership check times.
The when construct 1.6 — 1.15 expresses nondeterministic choice: if both alternatives are
enabled one is chosen at random. After each alternative execution, a new cycle 1.5-1.16
starts. We assume that between a start and a subsequent suspension a task executes in
mutual exclusion. Thus, the execution of command sequences such as 1.7-1.11, 1.13-1.15,
and 1.18-1.20 is atomic with respect to synchronization. There is no requirement,however,
that the execution of task commands be atomic with respect to failures i.e., a failure can
interrupt or delay their execution at any time.

11

Programs are made independent from the processors they run on by the use of a standard
function myid. When invoked from a program, this function returns the identifier of the
processor on which the program runs (e.g. 1.9). To simplify our description, we assume an
“intelligent” communication subsystem that batches all “present” messages broadcast for
identical view times V into one message (1.12) containing V and the set M = MEMBERS
(V) of processors who have broadcast “present” at V, instead of delivering all such messages
one by one. (It is straightforward to modify the message deliver tasks given in [CASD85] and
[Cri90] to achieve this.) The tests (1.7, 1.18) detect task performance failures. The invoca-
tion of abort commands (1.7, 1.18) transforms such performance failures into membership
server crash failures. The cancel(A) command (1.18) cancels all previously scheduled starts

of a task A.

The removal of the null n assumption adopted for simplicity in section 4.1 introduces two
kinds of complications. A minor one is in the computation of task start times and delays.
For example, we have taken into account the existence of the 5 uncertainty on task starts
by setting V 4+ 7 - 5 as start deadline for Broadcast (1.10, 1.20) if we want this task
to broadcast a “present” message by time V + w. Similarly, if we want each member of
a group V to broadcast its first “present” message for check time V + 7 after it learns
the membership of V, the initial requirement of A < © becomes A + 1 < 7. A second
complication is the need to make sure that all joined replicated servers execute identical
sequences of actions despite random task scheduling delays. For instance, it would be
unacceptable if a “new-group” message creating an unscheduled view time V7 is received at
a moment when the Broadcast task is startable for some previously scheduled check time V.
such that V — V7 < 5. With a nondeterministic choice of which task to start among several
startable tasks, it would be then possible for some joined membership servers to broadcast
“present” messages for V and for some others not to broadcast such messages. This would
result in incorrect failure detections by time V + A, when each server p € P will assign
(1.14) the value MEMBERS(V) to members(p). In particular, a server q who cancelled
V because of its earlier processing of the (“new-group”, V7) message could detect its own
failure when it would process at V + A the “present” messages send by other servers for
time V! The task scheduling rules presented in Sect. 2.2 are thus essential for achieving
agreement on view and membership check times among servers in the presence of random
task scheduling delays. According to these rules, the reception of a “new-group” message
for an unscheduled view time V7 (even within 7 time units from a check time V) can only
have the following consequences. If V > V7, the start of the Membership task before the
Broadcast task at all servers results in the consistent cancellation of V. If V < V7 then none
of the previously joined servers cancels V. i.e. they all broadcast “present” by time V.

4.3 Analysis

It is not our intention to provide lengthy formal proofs of correctness for our protocols.
This would make this (already long) paper even longer. Instead, we describe informally

12

why these protocols work properly.

Time is used to uniquely identify successive processor groups. Whenever a membership
change is detected for some view or check time V (1.14), the atomicity and termination
properties of atomic broadcast imply that the values assigned to the local variables group(p)
and members(p) are Vand MEMBERS(V), respectively. In this way, between the creation
of two successive groups V and V7, any server p joined to V has its local variables group(p)
equal to Vand MEMBERS(V), respectively. Thus, our implementation satisfies require-
ments (Ss) and (Sa). Since broadcasts are also delivered to their source processor, and the
test (1.13) ensures that processor p will not incorrectly join a group of which it is not a
member, requirement (Sr) is also satisfied. Requirement (Sh) follows from the termination
and atomicity properties of the atomic broadcast service used by a joining processor: these
properties force all correct processors to agree on a new view time V as well as on the se-
quence V4 7, V4 27, ... of membership check times that might serve as group identifiers
until the occurrence of a new processor start event.

Our implementation also satisfies the timeliness requirements (Tj) and (Td). For instance,
consider a processor j that starts a join procedure (1.4) at time S, and an arbitrary processor
p, so that both p and j stay correct past time .S. If no other joins are started by other
processors after time S — A, j and p will receive a “new-group” message at times in the
interval [S 4+ D, S 4+ A]. Since by hypothesis j and p are correct, they will both broadcast
“present” for the view time S + A. These messages will be received (1.12) by both p and j
in the interval [S + 2D, S + 2A]. Processor j as well as processor p will then both become
joined to the group S + A by time S 4+ 2A. Consider now the other case when at least
another processor started a join procedure in the time interval (S - A, 5), and let q be a
processor that started the join procedure at the smallest time in the above interval. It is
then possible that both j and p receive the “new-group”’ message broadcast by q for a view
time V < S+ A. In such a case both p and j (and q as well) will broadcast “present” for
view time V, and will join the group V at times smaller than S + 2A. This yields J = 2A
as the worst case join delay.

If a joined processor f fails immediately after broadcasting “present” (this can happen as
early as time V- 27 for a view time V created by a join), it will take in the worst case (i.e.
no concurrent joins cause other view times smaller than V 4 7)2n + 7 time units until the
occurrence of the next scheduled membership check time O = V 4+ «. This will be missed
by f, i.e. f €MEMBERS(O), so by time O + A, when each surviving server p detects that
MEMBERS(O) # MEMBERS(V), the failure of f is detected (1.4). Thus, the worst case
failure detection time is D = 7 + A + 2.

We assume D < R 4 J, that is 7 - A + 29 < R. In this way a surviving member p removes
a failed processor f from members (p) before f can be reinserted.

13

5 The attendance list membership protocol

The main drawback of the periodic broadcast protocol is that it requires n atomic broadcasts
every m time units, even when no failures or joins occur, where n is the cardinality of the
“current” membership. To reduce message overhead in the absence of joins and failures,
we now derive a second protocol that uses only n datagram messages every 7 time units
to check for group stability. As in the sketch of the previous protocol, we first assume 7
= 0 and deal with the complications caused by a positive i only in the detailed protocol
description.

5.1 Sketch of the attendance list membership protocol

Join handling. Joins are handled exactly as in the “periodic broadcast” protocol.

Failure handling. Consider that after starting at time S, a processor j causes the creation of
a new processor-group V = 5+ A with membership M = MEMBFERS(V). By time C'= V
+ A all correct members of V know the new membership. To check that this membership
is still “current” 7 time units after the view time V, the members of V agree that one of
them (e.g. the one with highest processor identifier) will issue at membership check time O
= V + 7 an “attendance list” to be circulated (by using datagram messages) to all group
members. We assume C' < O, i.e. A < 7, to allow the list originator the time to learn the
membership of the group V before issuing the list. All group members must relay the list
before it returns to the initiator. One way of passing the attendance list among members
is to arrange them in a virtual ring [LeL.78, Wal82] and let each member m relay the list to
its known successor n = nexzt(m, M) on this ring, where

next(m, M) = if m = max(M) then min(M) else min {peM | m < p}

If all members of the group V are correct and no datagram service failures occur, each
member must receive the list in the time interval [O- ¢, O + 7] wherey =n é + ¢ and n =
|IMEMBERS(V)|. If lists are stamped by their origination time O, late lists received after
O + 7 because of performance failures can be detected and discarded. Since we assume
reliable clocks, there is no need to check for “early” lists, which arrive before O - ¢.

At membership confirmation time FF = O + v each correct group member checks whether
it has accepted a recent attendance list with origin O greater or equal than £ — . (If v + ¢
> 7 several attendance lists can coexist in real-time.) If all group members have accepted
such lists, then the V membership is still current at time FE. If at least one member p of
V detects at time I/ that the last accepted attendance list had an origin O smaller than
FE — v, p concludes that either a processor or a datagram service failure has occurred. To
distinguish between these two cases, p initiates a join procedure by broadcasting a “new-
group” message. If a processor femembers(V) has failed, f will be excluded from the new

14

group F + A that this join will create. Once the new group is created, new rounds of
attendance list circulation will check the stability of its membership, until a subsequent
join or failure, and so on. Note that, while in the periodic broadcast protocol, each check
time costs n atomic broadcasts, in the attendance list protocol each check time costs only
n datagram messages. This can result in a significant saving in steady state message traffic
in the absence of failures and joins. For example in a point-to-point network, the reduction
is from n(n x d — n + 1) datagram messages every 7 time units to n datagram messages
every m time units.

The minimum number of messages necessary for checking stability of a group of size n is n.
Indeed, if for a group of size n there were a protocol with only n — 1 messages, one of the
group members, say x, would not have to send a message during a group stability check.
If this hypothetical protocol assumes (optimistically) that no message from x means x is
correct, then that protocol would violate the (Td) requirement, because it would not detect
a failure of x. If the hypothetical protocol would (pessimistically) assume that x is down
when it does not receive a message from it, and would create a new group of which x would
be excluded (even though x remains correct), then it would violate the (Ss) requirement that
no group changes should occur unless failures or joins occur. Thus, such a protocol cannot
exist, and n is the minimum number of messages needed to check membership stability in
a group with n members.

Agreement on membership check times. As in the previous protocol, unscheduled view times
caused by processor joins cancel all membership check and membership confirmation events
scheduled before old processors learn of such joins.

5.2 Detailed description of the attendance list membership protocol

Each membership server is structured into 3 tasks: Membership, Membership-Check, and
Membership-Confirmation (Fig. 2). The Membership task controls the initial join of a
processor and receives all arriving messages. The Membership-Check task periodically gen-
erates attendance lists to check membership stability. The Membership-Confirmation task
examines in each joined processor the timely passage of these lists.

A new state variable L (2.3) is used to record the origin time of the last accepted attendance
list (2.19). In a manner similar to that discussed previously, a positive constant 7 influences
the computation of start and termination task deadlines (2.11, 2.29, 2.30). It also changes
the previously mentioned requirement A < 7 (imposed to let a list initiator learn the
membership of a new group before circulating a list in that group) to a final requirement

of A+ n <.

15

task Membership:
var members: Set-of-P initially { }
group: Time: L: Time initially — oco;
joined: Boolean initially false;
broadcast (“new group”, myclock + A);
cycle when receive (“new-group”, V
do if myclock > V then abort fi;
cancel (Membership-Check, Membership-Confirmation);
broadcast (“present”, V, myid);
schedule(Membership-Check, V + 7)) at V + 7 -
od;
when receive (“present”, V, M)
do if = joined & (myid € M) then joined — true fi;
if members # M then members — M; group — V fi
od;
when receive (“list”, O)
do if myclock < O + «v
then I — O;
if myid # max (members)
then send (“list”, O) to next (myid, members)
fi;

ﬁ.

bl

od;

endcycle

task Membership-Check (O: Time);

if myid = max (members) then

send (“list”, O) to next (myid, members) fi;
schedule(Membership-Confirmation, O + v + n) at O + v;
schedule(Membership-Check, O + 7) at O + 7 - »;

task Membership-Confirmation (£: Time);

if myclock > F then abort fi:
if L + v + n < E then broadcast (“new group”, F + A) fi;

16

5.3 Analysis

The upper bound on join delays J for the attendance list protocol is the same as for the
periodic broadcast protocol: J = 2A. However, the saving in steady state message overhead
causes an increase in the processor failure detection time. The worst case that can happen
is that a processor f fails immediately after it has broadcast a “present” message for some
view time created by a join (2.10) and no other joins or failures occur for a sufficiently long
time. If Vis the last view time for which f has broadcast “present” before failing, then f’s
failure could have actually occurred as early as V- 27. Assuming no joins or other failures
occur until the next scheduled membership check time O = V 4+ « (2.11), f will be unable
to relay the attendance list timestamped O in time (2.27-2.28, 2.2.23). If by membership
confirmation time £ = O + v 4+ 7 (2.29, 2.31) there still exists a correct member p of
V, p will detect that it missed this list (2.33) and will initiate a join procedure that will
lead to the creation of a new processor-group (from which f is excluded) by time E + J.
Thus between the moment a processor fails and the moment the failure is detected by all
surviving processors there can be a worst case delay of D =7 + v + 35 4+ J. (The detection
of f’s failure will be faster if { fails after relaying an attendance list or other concurrent
joins or failures cause a view time to occur before £ + A.) As for the first algorithm, we
assume that the restart delay R for a failed processor and the join delay J are bigger than
the failure detection time: D < R + J. This imposes the constraint: = + v + 3n < R.

6 The neighbor surveillance protocol

The attendance list protocol checks membership stability by requiring all members to relay
an “attendance list” message. An alternative approach for checking group stability is to
check for the stability of the “next” neighborhood relation defined in section 5.1 for all pairs
of group members (n, next (n, M)). We denote “previous” the inverse of the “nexzt” relation,
i.e. previous (next(n, M), M) = n. We refer to processor next (n, M) as the successor of n
in M, and to previous (n, M) as the predecessor of n in M.

The “neighbor surveillance” protocol handles joins in the same manner as the previous two
protocols. What is different is failure handling. We briefly sketch below how failures are
detected by assuming first a null 7.

After the creation of a new processor-group V, each member of V agrees to check whether
its predecessor is still correctly functioning at neighbor check time O = V + w. To let the
members of V' learn who their neighbors are before checking whether these are still alive,
we require A < 7w. At time O, each member sends a “neighbor” message — timestamped
O — to its successor. In the absence of failures, each member receives such a message
before time O 4 v/ where v/ = § + €. A “neighbor” message that arrives after O 4+ v/ is
not accepted. At neighbor confirmation time F = O + «/, each member checks whether it

17

has accepted a “neighbor” message with timestamp O greater or equal than F — vs. If all
members receive such messages, then membership stability is confirmed and a new neighbor
check time is scheduled for time O 4 7. If a member p of V detects that the last “neighbor”
message it has accepted had an origin O < I/ — v/, then a processor or a datagram service
failure has occurred. To distinguish between these two possibilities, p will — as in the
attendance list protocol — initiate at time F a join procedure leading to the creation of a
new processor-group £+ A and to new periodic neighborhood stability checks. Because of
its great similarity with the attendance list protocol, we do not give a detailed description
of the neighbor surveillance protocol.

6.1 Analysis

The protocol has the same join detection delay constant J as the attendance list protocol.
The main advantage of this protocol over the attendance list protocol is an improved worst
case single processor failure detection delay, which we derive below. Assume that a processor
f departs at time T and no other failure or join occurs before time 7t = T + © + ~/ 4+ 3n.
The failure of f will be detected by {’s successor by time 77; this will initiate a join that will
cause all other surviving group members to detect {’s failure by time 77 + J. Thus, the worst
case delay for detecting a single failure is D1 = © + ~/ + 3n + J. The worst case scenario
for multiple failures is the following. A processor ny departs at time 7T — 21 immediately
after broadcasting “present” for a view time T caused by a join, the processor ng succeeding
ny departs at some time in the interval (T 4+ 7 — 7, T+ 7™ + v/ + n) before detecting the
failure of its predecessor ny but after sending its “neighbor” message for check time T +
7 to its successor ng, nz departs before detecting the failure of ngy, but after sending its
“neighbor” message for check time T + 27 to its own successor n4, and so on. Such a chain
of close failures of members ny, ng, ..., ng of a group, where n,y1 = next(n;, M), leads to a
worst case multiple failure detection delay Dy = kx + v/ + 3np + J, k > 1. This yields an
upper bound on failure detection delay for any possible processor membership of Dr = (n -
1)m + 4/ 4+ 3n 4 J. For large values of 7 and n, this can be worse than the D upper bound
derived for the “attendance list” protocol.

7 Why is a processor-group membership service useful?

This section illustrates how one can implement a server-group membership service on top of
a processor-group membership service without adding any message overhead when no joins
or failures occur. We also sketch how the processor-group membership service helps solve
two other problems: a service availability problem, and the problem of limiting communi-
cation among replicated servers to group members only.

18

7.1 Server-group membership

The objective of a server-group membership (SGM) service is to let each member z of a
replicated server team 7 know the membership of the group of correctly functioning 7
members. There can be several server teams 7, 7/, The SGM service gives any joining
server z the identity of all other correct Z members, and subsequently notifies z of any group
membership changes. We briefly sketch below how an SGM service can be implemented
as an extension of a processor-group membership service. We assume that the operating
system of any processor peP is capable of notifying the SGM server on p of the failure of
any server running on p.

The global state of the SGM service is recorded in the “joined” “group” and “members”
variables maintained by the underlying processor-group membership service and a new state
variable (or table) “S” of type Server x Team x Processor. The existence of an entry (z,Z,p)
in S means “server z of team 7 runs on processor p”.

When a SGM server on processor p learns that a local server z wants to join the group of
correct 7 members, it atomically broadcasts a global SGM state update “z joins 7 on p”
to all SGM servers (including itself). When this message is received by an arbitrary joined
SGM server q, q inserts a (z,7,p) entry in its local S table and notifies all members of Z
that run on q of their group membership change. The SGM server on p also sends to z the
current 7 membership. (A more complex protocol is needed if at join time, the local SGM
server would have to give z not only the membership of Z, but the entire global state of the
7 group. We leave it to the interested reader to derive this protocol, by analogy with the
SGM server join protocol given below.)

The failure of a server z on processor p can either be explicitly notified by z or implicitly
notified by the operating system on p when it detects z’s failure (in the latter case the SGM
server needs to consult S to find the team Z to which z belonged). When the SGM server
on p learns about the failure of z, it atomically broadcasts a global SGM state update “z
departs Z on p” to all SGM servers. When this message is received by an arbitrary joined
SGM server q, q removes (z,7,p) from its local S variable and notifies all members of 7
running on ¢ of the failure of z.

When a joined SGM server on a processor q detects the failure of a processor p, it interprets
this as the failure of all servers running on p. The local table S on ¢ contains enough
information to identify all servers that were running on p. For each such server z, the SGM
server consults S to determine the group Z to which z belonged, deletes (z,Z,p) from S, and
notifies all local Z members of the failure of z.

Finally, let us sketch how the SGM server on a newly started processor j joins an existing
group of correctly functioning SGM servers. For simplicity, we assume a null » and leave it
to the reader to analyze joins when 7 is positive. If the server starts the join at time 7T by
sending a “new-group” message, it will create an unscheduled view time V=T 4+ A. When

19

this message is processed by an arbitrary other joined SGM server q at time V. q adds to
the “present” message that it broadcasts not only its identity (as discussed previously) but
also the value S(V) of its local S variable at time V The server j monitors all global SGM
state updates initiated at times between T and V by joined SGM members; let U be the
sequence of these updates. If by time T + 2A, j does not receive any “present” message,
it concludes that it is alone, joins a processor-group of size 1 with only itself as a member
and initializes S to the empty relation {}. Suppose by time T + 2A j receives at least
one “present” message containing a value S(V). This value is outdated if the sequence U of
updates to S broadcast between T and V is not empty, so to compute the “current” state
of S at time V 4+ A, j has to apply all updates in U to S(V) before assigning the resulting
S(V 4+ A) value to its local S variable. This concludes the join of j.

Reliance on processor-group membership to detect processor failures and on operating sys-
tem services to detect server failures leads to an efficient server-group membership service
implementation: no periodic message exchange overhead for checking server-group stabil-
ity is required other than the lower level overhead needed for solving the processor-group
membership problem. Thus, an increase in the number of server-groups or the number of
servers does not cause the amount of periodic overhead to grow when the number of proces-
sors remains constant. The solution given satisfies all the safety and timeliness properties
described for the processor-group membership service in section 3. In particular, if there
is a total order O on the server names of each team 7 and any SGM server interprets the
simultaneous failure of any set of Z servers as a failure in that order, then SGM servers can
totally order all server join and server failure events in the system. Thus, at the server-group
level it is possible to have a total ordering over server-group state updates similar to that
mentioned for the processor-group membership abstraction.

7.2 Service availability despite processor failures

We define this problem as follows: choose k processors from a group of n processors (n >
k) to run a totally ordered set of k services S = (s1, sg, ..., s;) for as long as there are at
least k correctly functioning processors in the network. For simplicity we assume that any
service can be hosted by any processor and each processor has enough capacity to run only
a single service. Often the services are further partitioned into a subset of v vital services
(v < k) and a subset of k — v non-vital services. Availability of all vital services is necessary
for the system to be able to do any work. If some non-vital services become unavailable,
the system goes into a “gracefully” degraded mode. The objective is to ensure that all vital
services are available for as long as there are at least v working processors and that as many
of the other services are provided as working processors in excess of v. Non-vital service
s;, 1 > v, is considered more important than non-vital service s;;;, j > 0. Examples of
common vital services are network reconfiguration coordinator, central lock manager, name
manager, and primary host for an important database. Examples of less vital services are
network administrator, back-up host for a database service, and communication gateway to

20

some other network. To avoid confusion, it is necessary that, at any instant in real-time,
there be at most one processor providing a given service. Moreover, should a processor
that provides a certain service fail, another processor should start that service within a

short bounded time interval. If k = 1, this problem becomes a “continuous leader” election
problem [GM82].

A processor-group membership service allows the above problem to be solved quite simply
(we assume in what follows that each time a processor-group change occurs at most one
processor joins or departs; we leave it to the reader to deal with the case when arbitrary
subsets of processors can join or depart simultaneously). If processor p joins a group of
size j < k whose older members already provide a set S/ of services, it starts service min(S
— S1), otherwise, if j > k, p does nothing. If the failure of a processor p is detected when
a new group g is created, then, if p was not running any service nothing must be done.
Otherwise, if p was running a service s;, and the size j of g is greater than k, the oldest
member of g without a service must start s;. If v < j < k and i < j, the processor that
runs s; aborts s; and starts s;. The above rules ensure that in any processor membership
of size j > v all vital services as well as the most important j — v non-vital services are
available, and that processor failures cause a minimum number of service migrations. Such
a solution is superior to a static assignment of services to processors (that would render
a service unavailable as long as the processor statically assigned to it is down) or a static
primary/back-up scheme where the crash of just two processors to which some vital system
services are assigned (such as primary and back-up lock manager) can bring the entire
system down despite the fact that all other network processors function correctly.

7.3 Limiting group communication to members only

Consider a group g of processors that must ensure the availability of a certain service s such
that s can be correctly provided only when there exists at most one server for s (i.e. the
co-existence of two servers for s would lead to a service failure). Suppose that at time T’
a member p of g has to start s locally. If a performance failure prevents p from starting s
in time, by time T + D, the surviving members of g will form a new group g/ from which
p will be excluded. For availability reasons, s will have to be started in the new group gf
by another processor q. For availability reasons, s will have to be started in the new group
g/ by another processor q. If p is not equipped with timeliness checks that transform its
performance failures into crash failures (such as those illustrated at (1.7, 1.18, 2.8, 2.32)),
p might after time 7'+ D broadcast a message that it has (finally) started s. The members
of g/ must ignore this message to avoid confusion.

To solve this (and other related problems), it is necessary to clearly define the scope of
group communication. Communication other than join communication, as illustrated in
section 7.1, must be restricted to established group members only. If all groups that can
exist in time are uniquely identified by distinct group identifiers, these identifiers can be

21

used to filter group messages. In our example, if all messages are stamped by the group
identifier to which their sender is joined, it is easy for all members of g/ to discard messages
stamped g coming from a member of a past group that is no longer a member of gr. The
systematic stamping of group messages with group identifiers together with rules for dealing
with message transmissions that overlap group transitions can prevent members of a group
from sending messages to, or receiving confusing messages from, outside the group.

8 Optimizations and extensions

This section discusses three optimizations that can be applied to all protocols given, as
well as a possible hierarchical extension of the attendance list protocol that can handle an
increased number of processors.

A straightforward optimization that will lead to better failure and join delays consists of
merging the membership layer presented in this paper and the atomic broadcast algorithms
discussed in [CASDS85] and [Cri90] into a single layer. The elimination of communication
between a lower broadcast layer and an upper membership layer will save several n’s from
the join and failure processing delays given previously. A second optimization relies on
the observation that, at each view time, all members broadcast “present” messages for a
same view time V within a short real-time interval of length . The message diffusions
corresponding to these broadcasts can be “merged” so as to reduce the total number of
exchanged messages if the following diffusion optimization rule is followed: a processor p
should send a message containing some information I to a neighbor n only if p is not sure
that n knows I. One way of enforcing this rule is to record on each “present” message diffused
for view time V that carries information I the identity P(I) of all processors that know I. A
processor will then relay a “present” message for view time Vthat carries information I only
to those neighbors that are not in P(I). A third optimization prevents excessive message
traffic that could be caused by a processor that crashes and restarts frequently. To prevent
such traffic, it is possible to associate with each processor in the network the set of its last
join times and to check at each join whether the processor is not a “frequent joiner”.

When the number n of processor-group members becomes significant, it becomes undesirable
for all processors to send messages at the same clock times, especially in a system with a
small maximum deviation between clocks ¢. In such a case, one can spread the message
traffic by using a technique called “staggering”. The main idea behind staggering is as
follows. Let k be the rank of a member p of a processor-group g, where £ is defined as the
relative position of p on the “next” virtual circle associated with g as described in section 5.1,
starting with the member with the greatest processor identifier. If a membership protocol
requires p to send a message at some time 7T, the “staggered” protocol will require p to
send the message at T — ks, where s is a staggering time constant, chosen greater than ¢
to ensure a proper dispersion of message traffic. Since staggering can lead to an increase

22

in the membership check period 7, it can worsen the bounds on failure detection delays.
Often the resulting increase is more than compensated by the elimination of membership
protocol related traffic spikes.

The membership protocols presented do not scale well to large point-to-point networks,
because of the number of messages broadcast when membership changes occur. The de-
sign of protocols that provide bounded membership change detection delays in the presence
of concurrent failures and joins and that scale well for large point-to-point networks is a
challenging problem. In an internet composed of several smaller networks, one natural
solution to this problem is to use local attendance list protocols to determine the member-
ship and the leader for each small network, and to let these leaders participate in a global
leader attendance list protocol at the internet level. A leader can then report any change
in the membership of its own small network by piggybacking it on the global attendance
list. These changes can then in turn be propagated by all the other leaders into their own
small networks. This 2-level hierarchy can, of course, be generalized to a k-level hierarchy.
Such hierarchical schemes provide bounded crash and join processing delays and require
less message traflic to process membership changes than a brute force 1-level attendance
list protocol run on the entire internet. The cost is an increase in protocol complexity and
in join and crash detection delays.

9 Conclusion

This paper has specified the processor-group membership problem and has provided three
simple protocols for solving it in synchronous networks. The first protocol provides the
fastest failure detection time, but can have a significant message overhead even when no
failures or joins occur. The second and third protocols have a minimum message overhead
in the absence of failures and joins. If failures are rare, the detection time provided by
the third protocol is the best. However, if failures can cluster in time, the second protocol
provides a better upper bound on failure detection times than the third.

The processor-group membership problem is a fundamental problem in distributed fault-
tolerant system design in that it allows many other problems to be easily solved. We
illustrated how a processor-group membership service helps to solve the server-group mem-
bership problem, a service availability problem and the problem of restricting group com-
munication to group members only. A membership service is also useful in solving other
problems, such as load balancing and enforcing service group replication strategies for var-
ious system services [Cri91]. Indeed, processor joins and failures are significant events for
a load balancer or a service availability manager and a processor membership service that
reliably notifies such programs of joins and failures considerably simplifies the design of
such subsystems.

When this paper was first published [Cri88], we knew of no other publications that dis-

23

cussed the processor membership problem in synchronous networks. Since then, another
synchronous membership protocol for Time Division Multiplexing Access (TDMA) based
broadcast networks was published [KGR91]. Although Kopetz, Griinsteidl and Reisinger do
not formally state the properties that their protocol possesses, if one interprets TDMA cycle
numbers as measuring a global system time and uses cycle numbers to uniquely identify
processor-groups, one realizes that the properties that their protocol satisfies are basically
the same as the safety and timeliness properties discussed in this paper. The protocol of
[KGRI1] achieves agreement on local membership views by assuming what one might call
“quasi-atomic” broadcast channels: for any message m sent by a processor on a channel,
either (1) all correct processors receive m, or (2) no correct processor receives m, or (3)
exactly one correct processor does not receive m. If channel failures could cause at least
two correct processors to miss a message received by some correct processor, the agreement
property on membership views can be violated. The protocols presented in this paper are
network independent: they can be implemented in both point-to-point and broadcast syn-
chronous environments. When implemented in a broadcast environment, our approach does
not rely on the existence of quasi-atomic channels: the protocols described in [Cri90] achieve
atomic broadcast even when faulty channels are allowed to deliver messages to arbitrary
subsets of correct processors.

All other processor-group membership protocols that we know assume an asynchronous
communication network in which partition failures can occur [BJ87, Car85, CM84, ASCS85,
KLWS86], and [Wal82]. These acknowledgement-based, asynchronous protocols do not guar-
antee any bound on processor failure detection and processor join delays even when run
in an environment where all delays are bounded. Progress in reaching agreement on new
processor-group memberships and learning about new processor failures and joins can be
infinitely delayed by appropriately chosen sequences of events such as joins, omission com-
munication failures and processor crash failures. On the other hand. asynchronous protocols
such as the ones described in [CM84] and [ASC85] can be designed to satisfy safety require-
ments such as (Sa) and (Sh) even when partitions occur. However, to ensure these properties
in the presence of partitions, these protocols require that at any time there be at most one
processor-group authorized to carry on work. This is achieved by requiring that a majority
(or a quorum) of processors be in a group of processors before that group can do any work
for system users. Thus, while asynchronous protocols are safe but not timely, synchronous
protocols are always timely, but are only safe in the absence of partitions. For example, if a
partition occurs while a correct processor diffuses a “present” for some membership check
time T, some correctly functioning processors might not receive the message by T4+ A while
others might receive it. This will lead to divergent views on membership, in violation of
requirements (Sh) and (Sa). There exist known approaches (see for example [SSCAS87]) for
detecting and reconciling processor views computed by using synchronous protocols after
partition occurrences, but such “optimistic” approaches cannot be used in applications in
which one cannot compensate for the actions taken by certain processors when their local
views were inconsistent with the views of other processors.

24

One is thus currently faced with the following dilemma. Fither adopt a synchronous ap-
proach, which guarantees bounded response times in the presence of any sequence of failures
and joins, can continue to work for as long as there exists at least one working processor in
the system, but can violate its safety requirements when communication partitions occur,
or adopt an asynchronous approach that never violates safety requirements such as (Sa)
and (Sh), even when communication partitions occur, but requires the presence of a major-
ity (or quorum) of correct processors before any work can be done, and cannot guarantee
any bounded response times. Whether one can design protocols that are always safe, are
timely in a synchronous environment and are untimely only when run in an asynchronous
environment is an open problem.

Acknowledgements. Comments from Jean Raymond Arbrial, Houtan Aghili, Danny Dolev, Joe
Halpern, Michael Raynal, Shri Sabnis, Frank Schmuck, Dale Skeen, Jim Stamos, Ray Strong, Moshe
Vardi, Pierre Wolper, and the Referees helped clarify my understanding of the membership problem.
This research was partially sponsored by IBM’s System Integration Division as part of a FAA
Sponsored project to build a new air traffic control system for the US.

References

[ASC85] A. Abbadi, D. Skeen, and F. Cristian. An efficient fault-tolerant protocol for replicated
data management. In SIGACT/SIGMOD, 1985.

[BJ8T7] K. Birman and T. Joseph. Reliable communication in the presence of failures. ACM
Transactions on Computer Systems, 5(1):47-76, Feb 1987.

[Car85] R. Carr. The Tandem global update protocol. Tandem Systems Review, Jun 1985.

[CAS86] F. Cristian, H. Aghili, and R. Strong. Approximate clock synchronization despite omis-
sion and performance failures and processor joins. In Proceedings of the 16th International
Symposium on Fault-Tolerant Computing, pages 218-223, Wien, Austria, Jun 1986.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From simple message
diffusion to Byzantine agreement. In Proceedings of the Fifteenth International Sympo-
stum on Fault-Tolerant Computing, pages 200-206, Ann Arbor, MI, Jun 1985.

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Transactions on
Computer Systems, 2(3):251-273, Aug 1984.

[Cri88] F. Cristian. Agreeing on who is present and who is absent in a synchronous distributed
system. In Proceedings of the Eighteenth International Conference on Fault-tolerant Com-
puting, pages 206-211, Tokyo, Jun 1988.

[Cri90] F. Cristian. Synchronous atomic broadcast for redundant broadcast channels. The Jour-

nal of Real Time Systems, 2:195-212, 1990.

[Crigl] F. Cristian. Understanding fault-tolerant distributed systems. Communications of ACM,
34(2):56-78, Feb 1991.

[GM82] H. Garcia-Molina. Elections in a distributed computing system. IEEE Transactions on
Computers, C-31(1):49-59, Jan 1982.

25

[KGRO1]

[KLWS6]

[Lam84]

[Lel78]

[SSCAST]

[Wal82]

H. Kopetz, G. Grunsteidl, and J. Reisinger. Fault-tolerant membership service in a
synchronous distributed real-time system. In A. Avizienis and J.C. Laprie, editors, De-
pendable Computing for Critical Applications, pages 411-429. Springer-Verlag, Wien,
1991.

N. Kronenberg, H. Levy, and Strecker W. Vax clusters: a closely coupled distributed
system. ACM Tr. on Computer Systems, 4(2):130-146, 1986.

L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM
Transactions on Programming Languages and Systems, 6(2):254-280, 1984.

G. LeLann. Algorithms for distributed data-sharing which use tickets. In Proceedings
of Third Berkeley Workshop on Distributed Data Management and Computer Networks,
pages 269-272, Berkeley, CA, Aug 1978.

R. Strong, D. Skeen, F. Cristian, and H. Aghili. Handshake protocols. In Proceedings of
the Seventh International Conference on Distributed Computing Systems, pages 521-528,
Berlin, Sep 1987.

B. Walter. A robust and efficient protocol for checking the availability of remote sites. In
Proc. 6th Berkeley Workshop on Distributed Data Management and Computer Networks,
pages 45-67, 1982.

26

