Characterizing the Performance Bottlenecks of
Irregular GPU Kernels

Molly A. O’Neil

M.S. Candidate, Computer Science
hesis Defense
April 2, 2015

Committee Members:

TEXAS*STATE@ Dr. Martin Burtscher F P l
»

UNIVERSITY Dr. Apan Qasem

Dr. Dan Tamir
The rising STAR of Texas Efficient Computing Laboratory

Highlights

 GPUs are everywhere — and really good at
accelerating certain types of codes (regular,
vector-based) in energy/cost-efficient manner

* But lots of emerging, important codes are irreqular in nature

 Nobody knows yet how to efficiently run these codes on accelerators

* This thesis asks: What are the biggest hurdles to enabling GFPUSs
to efficiently accelerate these codes?

* Answer can help hardware designers broaden the acceleration
capabillities of GPUs

Background

* GPUs as general-purpose accelerators
o Ubiquitous iIn HPC/supercomputers

e Spreading in PCs and mobile devices
* Performance and energy-efficiency benefits...

Background

* GPUs as general-purpose accelerators
o Ubiquitous iIn HPC/supercomputers

e Spreading in PCs and mobile devices
* Performance and energy-efficiency benefits...

e ...when code is well-suited!

o Reqular (input independent) vs. irreqular (input determines control flow
and Memory accesses)

* |ots of important irregular algorithms
* Social networks, compilers, data mining, physics simulation, etc.
* More difficult to parallelize, map less intuitively to GPUs

3

Motivation

* GPUs likely to continue to grow in importance

* Need to better understand irregular applications’
specific demands on GPU hardware

 How they differ from those of regular codes

 |dentify most significant architectural limitations for irregular GPU
kernels

* [0 help software developers better optimize irrequiar coaes

* As a baseline for exploring hardware support tor broader classes of
general-purpose codes

Related Literature

e Simulator-based characterization studies

 Bakhoda et al. (ISPASS’09), Goswami et al. (ISWC’10), Che et al.
(IISWC’10), Blem et al. (EAMA’11), Lee and Wu (ISPASS’14)

 CUDA SDK, Rodinia, Parboil (no focus on irregularity)
o [ISWC’14: O’Neil and Burtscher ' [LonestarGPU]; Xu et al. [graph codes]

* Emulator studies (also SDK, Rodinia, Parboil)
* Kerr et al. (IISWC’09), Wu et al. (CACHES’11)

* Hardware performance counters
* Burtscher et al. (ISWC’12) [LonestarGPU]|, Che et al. (ISWC'13)

[1] O’Neil and Burtscher, “Microarchitectural Performance Characterization of Irregular GPU Kernels,” ISWC 2014.

5

GPU Review

%

Block (0 1) Blodc(1, 1) %&(z 1)
& l"‘ [%\
) f' "rf \".‘ \\\‘
r'fl f" “\ \‘\
i‘ .

* [wo-level compute hierarchy

e Streaming multiprocessors (SMs) each
composed of tightly-coupled processing
elements (PEs)

* CUDA program specifies the behavior of a kernel grid, the threads of
which are grouped into thread blocks and dynamically assigned to SMs

* [hreads within a block share on-chip cache and fast synchronization

* PEs execute warps (sets of 32 adjacent threads that execute as a
vector instruction operating conditionally on 32 elements)

* PEs fed with warps in multithreading style, interleaving between blocks

7/

Branch Divergence
I S eevvee

e Jo execute in parallel, threads in a warp must Condtir %%%%%%%%%%
share igentical control flow T

* |f not, execution serialized by hardware into

ler groups of threads such that all threads % % % % %
S i

IN subset execute the same instruction

* (Good performance requires minimal branch divergence

Branch Divergence
I S eevvee

* [o execute in parallel, threads in a warp must Copton
share identical control flow %%%%%%%%%
* |f not, execution serialized by hardware into
| f thread h that all thread
ﬁwmsi k?sr e% rce)igcf uct)e threeasafnseui(;] struitign .] %3%%%%%

* (Good performance requires minimal branch divergence

Irreqular control flow malkes diverqgence ditficult to avoid!

8

Memory Coalescing

* For good performance, memory accesses within a warp must be
coalesced (fall within the same cache line)

e |f a warp instruction touches multiple 128-byte segments, accesses to
additional lines are serialized

* Possible for single warp instruction to result in 32 separate transactions

addresses from a warp y _
adaresses from a warp

I e [S

0 32 64 96 128 160 192 224 256 288 320 352 1384 0 32 64 96 128 160 192 224 256 288 320 352 1384

Memory Coalescing

* For good performance, memory accesses within a warp must be
coalesced (fall within the same cache line)

e |f a warp instruction touches multiple 128-byte segments, accesses to
additional lines are serialized

* Possible for single warp instruction to result in 32 separate transactions

addresses from a warp
addresses from a warp

I e [S

0 32 64 96 128 160 192 224 256 288 320 352 1384 0 32 64 96 128 160 192 224 256 288 320 352 1384

Irregular access patterns make coalescing difficult to achieve!

Gache & Memory Hierarchy

* All SMs share global memory (DRAM) as well
as a unifled L2 cache (GTX 480: 768 kB ‘ \

* Each SM has a programmer-controlled !
shared memaory (16 kB - 48 kB)

e Shared between blocks resident on SM

e Fach Fermi SM has incoherent L1 data
cache (16 kB - 48 kB)

Methodology

Processor : o Processor
Texture B
Cores

Processon i ¥ K} Processor
Cores U Cores

i b |1 11 01 01 |01

Problem Statement

* [For a set of irregular and regular applications, understand the impact of
control-flow and memory-access Irregularity on...

 Branch divergence
 Memory coalescing

e (Cache effectiveness

Problem Statement

* [For a set of irregular and regular applications, understand the impact of
control-flow and memory-access irregul arlty on..
» Branch divergence A
 Memory coalescing
e (Cache effectiveness

T~ Code behavior

Problem Statement

. For a set of irregular and regular applications, understand the impact of
control-flow and memory-access irregul arlty on..
6 Branch d|vergence % A
e Memory coalescing ¥

T~ Code behavior

™~ Hardware performance

e (Cache effectiveness

Problem Statement

* [For a set of irregular and regular applications, understand the impact of
control-flow and memory-access irregul arlty on..
» Branch divergence A
* Memory coalescing ¥
e (Cache effectiveness

* Assess the sensitivity of these applications to hardware design
parameters such as...
e Cache and memory latency

T~ Code behavior

™~ Hardware performance

Hardware parame&ers

 (Cache and memory bandwidth cribical Fo bhe
 (Cache size performance factors
e (Coalescing behavior above

* Warp scheduling policy

Objective

My goal: From patterns of behavior in studied benchmarks, abstract
an understanding of the impact of irreqular code (data structures, v
algorithms, implementation choices) on hardware performance . l

e NOT my goal: Determine the best particular configuration of hardware
parameters for this particular set of codes and GPU device
e \Why not”/
e No claim of completeness in benchmark suite
e GPU microarchitecture (and macro-architecture!) still in flux

e | want to identify the major bottlenecks in hardware where architects should
be focusing their attention
* \ersus the sources of performance loss that programmers can address on their own

GPGPU-Sim

* Cycle-level microarchitectural simulator of a CUDA GPU
* Functional PTX simulator (NVIDIA's virtual ISA)
* Timing model for the SMs, caches,

. | PC, _Stack Bank Shared| [MSHR
shared memory, interconnect network, e B ——
" . . B s ask[1;W]:. A -bCoc:I‘:Zi.»Ca?:t:e g
memory partitions (including L2 cache), D28 § s)
| ValﬁnzN] = » €xture §
and off-chip DRAM ==
' 4 Bran;r\fﬁa[get PC oo -~ . /
Fetch [~—1 SIMT-Stack B3
X vaidiN_ T.Bor Active RS LL,
. I-Cathe | Decode 7 #u - > Issr:Sk_,r;Pefa"d ¢ 4 =
) Coll
¢ GPGPU‘S”“ V. 3.2.1 [geore 1 TN e |
Done (WID)

e GTX 480 (Fermi) configuration

* Plus bug fixes, additional operations, extra performance counters, and new
hardware configuration options

Applications

Irregular Applications (LonestarGPU)

* Breadth-First Search (BFS)

* [abels each node In graph with
minimum level from start node ~ © Barnes-Hut (BH)
* BFS: Topology-driven * Approximate N-body algorithm
e BFS-unroll: Multiple frontiers per using octree to decompose
teration w/ local worklist Space around bodies

* BFS-wiw: Data-driven, node per ¢ Mesh Refinement (DMR)

threao e [teratively transforms ‘bad’
* BFS-wic: Data-driven, edge per triangles by retriangulating
thread (Merrill et al., PPoPP’12) surrounding cavity

Irregular Applications (LonestarGPU)

* Minimum Spanning Tree

(MST) * Single-Source

» Applying Boruvka'’s algorithm, Shortest Paths (SSSP)
successively contracts minimum e Labels each node in graph with
weight edge until single node minimum level from start node

. Survey Propagation (SP) o SSSP: Topology-driven

» Heuristic SAT-solver based on * 555P-win: Data-driven, node
Bayesian inference, represents per thread
Boolean formula as bipartite * SSSP-wic: Data-driven, edge

graph of variables and clauses per thread

Semi-Regular Applications

 FP Compression (FPC)' * Traveling Salesman (TSP) 23
* [ossless data compression for * Find minimal tour In graph using
DP floating-point values terative hill climbing
* |rregular control flow * |rregular memory accesses

1] O’Neil and Burtscher, “Floating-Point Data Compression at 75 Gb/s on a GPU,” GPGPU 2011.

| I, Tamir, and Burtscher, “A Parallel GPU Version of the Traveling Salesman Problem,” PDPTA 2011.
3] O’Neil and Burtscher, “Rethinking the Parallelization of Random-Restart Hill Climbing,” GPGPU 2015.

N
Q
Z
@

18

Regular Applications

* Monte Carlo (MC) * N-Body (NB)
* Evaluates fair call price for set of * N-body algorithm using all-to-all
options using Monte Carlo force calculation
method » Texas State ECL version

 CUDA SDK version (outperforms SDK version)

Regular Applications

* Monte Carlo (MC) * N-Body (NB)
* Evaluates fair call price for set of * N-body algorithm using all-to-all
options using Monte Carlo force calculation
method » Texas State ECL version
 CUDA SDK version (outperforms SDK version)

* |nput for each benchmark:
* Small enough to result in reasonable simulation runtimes (<2 weeks) but large
enough to keep simulated hardware busy

* Where possible, working set = 5 times the default L2 cache size

19

Results & Analysis

Instructions per cycle (IPC)

2 Q
\ R

Peak: 480 IPC

Application Performance

—

—
—

o Strong correlation between
regularity of code and |IPC

—— - : I ‘ I —— . ‘ I : I . I : I
S C @
N & NN & F o
('.)
& 6

* & & 9

_ SZIl-I
» BH is an exception o
(runtime-dominating kernel has been regularized)

* No simple or fixed rule to delineate the performance of irregular
and regular codes

Sources of
Performance Limitation

Sources of
Performance Limitation

Diverqgence + Un-Coalesing
are not factors we have to
consider when writing
tmrad.tet CPU code!

Branch Divergence

Full
occupancy

30

25
o
c
8
g 20
O
o)
Q.
= 15
3
)
& 10
o
>
74

5

0

0\\ N X S C$
,0‘\‘\ @"‘A <<°"4A \b‘“& Q N @ c?'& K S
CEAR © Q & S

® Occupancy in cycles where a warp instruction is issued
Occupancy including idle and stall cycles

Branch Divergence

* |rregular codes more]
diverged |
e But only two <~50% F
occupled
 BH an outlier again R

Average warp occupancy
[N
Ul
I

B Occupancy in cycles where a warp instruction is issued
Occupancy including idle and stall cycles

| A |
| |

1.2

i
Lo

uonew.so) diem Papad yim dnpaads

Branch Divergence

Average warp occupancy

Branch Divergence -
* lrregular codes more | l
diverged | " 1 | |

Q Ny > &
* But only two <~50% PR A &
' M Occupancy in cycles where a warp instruction is issued
OCC u p I ed Occupancy including idle and stall cycles
' ' 1.2 71
 BH an outlier again

1.1

 Only afew codes >~10%
speedup even with
pertect warp formation

Speedup with perfect warp formation

Average warp occupancy
(=Y
o
|

Branch Divergence -
* lrregular codes more | l
diverged - I
& & &

o) @ Q ; N <& S ; A
e But only two <~50% S & & T P P
D ,
M Occupancy in dycles where a warp instruction is issued

OCC U p i ed Occupancy incf ding idle and stall cycles
» BH an outlier again] :

1.1

 Only afew codes >~10%
speedup even with
pertect warp formation

Speedup with perfect warp formation

Average warp occupancy
(=Y
o
|

Branch Divergence - |

* |rregular codes more
diverged | I . T I
o BUt on |y tWO <~ 50 % Qcﬁ\" o (éq,e\ Q@‘% & (;52 (5? & c;g? ¥ & & @

® Occupancy in cycles where a wiarp instruction is issued
Occupancy including idle and aII cycles

occupled
* BH an outlier again

1.2 7

 Only afew codes >~10%

speedup even with
pertect warp formation

1.1

Speedup with perfect warp formation

Memory Coalescing

[
-~
|

[T
N
!

[T
o
!

(00
1

= u,i.i,v
coalesced

Average access count
(o))
|
|

A ¢
RO) R & & ¢
& S

Loads ™ Stores

Memory Coalescing

* Regular applications are fully
coalesced

14

12

* [SP: byte-granular stores to same
word serialized by hardware

o N = (e))] Cco

S S
& <€ (,,5‘3 S LW

III Illlll |II| Ill III|II aRER
Q <<
%“’c’Q

 BH tree construction, SP, and SSSP- & cﬁ
win all very un-coalesced
* \ery scattered access patterns

* Jopological BFS + SSSP quite
coalesced, but...

Al Loads M Stor

Memory Coalescing

% coalescing stalls
()
o
X

Memory Coalescing

» Regular applications are fully o
coalesced :

» TSP: byte-granular stores to same § . i
word serialized by hardware 2)

 BH tree construction, SP, and SSSP- "¢« ¢ T8 T T T Tty 5 T T T
win all very un-coalesced
* \ery scattered access patterns -~

70%

* Jopological BFS + SSSP quite

60%
coalesced, but... £ sox
40%
X 30%
20% I I
106, | . N = I
\ Q;Z*

% coalescing stalls

0%

cg;,s \0 (J

g <3
& 5

Memory Coalescing

* Regular applications are fully
coalesced

12 —+

Average access count

* [SP: byte-granular stores to same
word serialized by hardware

 BH tree construction, SP, and SSSP-
win all very un-coalesced
* \ery scattered access patterns

* Jopological BFS + SSSP quite
coalesced, but...

A

mAll Lloads MStorés E

% coalescing stalls

* High load instruction count = even a
small amount of un-coalescing hurts

Memory Coalescing

0 32 64 96 128 160 192 224 256 288 320 352 384

* [wo components to coalescing

1. Plipe stall or replay necessary to perform cache lookup, set up
mMemaory request, etc.

2. Extra memory traffic

 New GPGPU-SIm configuration: No Coalesce Penalty (NCP)
* Artificially removes the pipeline stall for non-coalesced accesses
 No other improvement to memory pipeline to handle additional traffic
* Not intended to be a realistic hardware improvement

Memory Coalescing

1.4 7

—
N
|
|

Speedup (IPC)
—
R

Ny i .~ . = . |

09 - BFS BFS- BFS-wlw BH DMR MST SP SSSP SSSP-win FPC TSP NB MC
unroll

No Coalesce Penalty NCP + improved L1 B NCP + improved L1+L2

Memory Coalescing

* Applied NCP config by itself as well as in combination with increased cache buffers

 Removing pipeline penalty alone does little good (and sometimes hurts)
* |mproving miss-handling capacity in the cache doesn’t help much, either!

o H/W improvements aimed at reducing coalescing pipeline penalty unlikely to help
irregular codes unless combined with improved memory bandwidth or cache usage

1.4

1.3

=
)

Speedup (IPC)
[EY
i

— i _ . = . I i
B

. BFS BFS- BFS-wlw BH DMR MST SP SSSP SSSP-win FPC TSP NB MC
unroll

[N

o
©

No Coalesce Penalty NCP + improved L1 B NCP + improved L1+L2

34

Memory Coalescing

* Applied NCP config by itself as well as in combination with increased cache buffers

 Removing pipeline penalty alone does little good (and sometimes hurts)
* |mproving miss-handling capacity in the cache doesn’t help much, either!

o H/W improvements aimed at reducing coalescing pipeline penalty unlikely to help
irregular codes unless combined with improved memory bandwidth or cache usage

1.4

=
w

e Bv%amgrav\utar
= stores

Speedup (IPC)
[EY
N

[
[N

. BFS BFS- BFS-wlw BH DMR MST SP SSSP SSSP-win FPC TSP NB MC
unroll

[N

o
©

No Coalesce Penalty NCP + improved L1 B NCP + improved L1+L2

34

Cache Effectiveness

100% -
90% -
80% -

* \ery high miss ratios (most
>50% In the L1)

70% -
60% -
50% -

Cache miss ratio

40% -

e GPUs and CPUs have caches
for different reasons

30% -
20% -
10% -

0%

Cache Effectiveness

100% _ 300 -
>
90% E
- a 250
.O
o 70% §
(- S 200 -
© (7]
= 60% =
& o
€ 50% B S 150 -
Q
S 0 S
S 40% =
© T 100 -
30% o
(7]
20% o
é’ 50 -
10% o
: 1
0% S 0 - —
S O < AR R S W O Qv L N
& oﬁ\{ > Cy@ ¥ C;QX\ Q\QQQ\ QC) K %c’cj Q’Q\\ Q’\‘b &SN ng éO\ $\$ %’\6\ ” Q;z\ QQQ\ @6\ 2 ‘ocggQ’@QQ ’\‘A\c QQ(/ ,{3 @b ®(J
L1D L2 ® mLID 12

Cache Effectiveness

SP=939

e

W
o
-

* |rregular codes look very
different than regular codes

* |ots of pointer chasing

N
U1
o

200 -
 Not much spatial locality

150 -

100 -

* SP has highest average
access count of these codes
— absurdly high miss rate

U
o

Cache misses per 1000 warp instructions (MPKI)

p—

Individual Applications

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline

stage responsible for no-issue Atomic

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline

stage responsible for no-issue Atomic

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline

stage responsible for no-issue Atomic

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline

stage responsible for no-issue Atomic

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark Pipeline Stall: Non-LSU

* |nissue stage of each SM

 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue Atomic

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark Pipeline Stall: Non-LSU

* |nissue stage of each SM

 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue Atomic

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark Pipeline Stall: Non-LSU

Interblock Imbalance

* |nissue stage of each SM

 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue Atomic

Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark Pipeline Stall: Non-LSU

Interblock Imbalance

* |nissue stage of each SM

 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue Atomic

|dle: Sync Barrier Idle: Mem Barrier Idle: Atomic

O O
Control Hazard Scoreboard Hazard Pipe Stall: LSU
Pipe Stall: Other Divergence Imbalance

Busy

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

BFS BFS- BFS-wlw BFS-wlc BH BH(tree) DMR MST SP SSSP SSSP-wlin SSSP-wilc FPC TSP NB MC
unroll

]] |dle: Sync Barrier Idle: Mem Barrier Idle: Atomic
- % Control Hazard Scoreboard Hazard Pipe Stall: LSU
= Pipe Stall: Other Divergence Imbalance
Busy
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
BFS BFS- BFS-wlw BFS-wilc SSSP SSSP-win SSSP-wlic

unroll

. . Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic
- % Control Hazard Scoreboard Hazard Pipe Stall: LSU
= Pipe Stall: Other Divergence Imbalance
Busy
100%
90%
200 Large memory
access penalty
70% In nearly all of the
iIrregular apps
60%
50%
40%
30%
20%
10%
0% | |
BFS BFS- BFS-wlw BFS-wic SSSP SSSP-win SSSP-wlc

unroll

Applications: BFS & SSSP

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

BFS

H

BFS-
unroll

BFS-wlw BFS-wilc

Large memory
access penalty
in nearly all of the
iIrregular apps

Data-driven codes have high
synchronization penalty

Idle: Sync Barrier

“ Control Hazard

SSSP

|

Pipe Stall: Other
Busy

[

SSSP-win SSSP-wlc

Idle: Mem Barrier
Scoreboard Hazard
Divergence

Idle: Atomic
Pipe Stall: LSU
Imbalance

Applications: BFS & SSSP

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

I
BFS

BFS-
unroll

BFS-wlw BFS-wilc

Large memory
access penalty
in nearly all of the
iIrregular apps

Data-driven codes have high
synchronization penalty

“Idle: Sync Barrier

® Control Hazard
Pipe Stall: Other
Busy

BN 2 e B
SSSP SSSP-win SSSP-wic

Idle: Mem Barrier Idle: Atomic
Scoreboard Hazard “ Pipe Stall: LSU
Divergence Imbalance

Additional atomic

operations add mostly
RAW hazard stalls

|dle: Sync Barrier Idle: Mem Barrier Idle: Atomic

]]
% Control Hazard Scoreboard Hazard Pipe Stall: LSU
Pipe Stall: Other Divergence Imbalance

Busy

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

BFS BFS- BFS-wlw BFS-wilic SSSP SSSP-win SSSP-wlc
unroll

|dle: Sync Barrier Idle: Mem Barrier Idle: Atomic
% Control Hazard Scoreboard Hazard Pipe Stall: LSU
P|pe Stall: Other Divergence Imbalance

Applications: Other Irregular

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

BH BH(tree) DMR MST SP

Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic
® Control Hazard Scoreboard Hazard Pipe Stall: LSU
P|pe Stall: Other Divergence Imbalance

Applications: Other Irregular

100%
90%
Barnes-Hut looks
80% quite regular...
70%
60%
50%
40%
30%

20%

10% 4|

0% S v . _ B
BH BH(tree) DMR MST SP

N N Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic
- ® Control Hazard Scoreboard Hazard Pipe Stall: LSU
= Plpe Stall: Other Divergence Imbalance

100%

90%
Barnes-Hut looks
80% quite regular...

70%
60%

50%

..but not all of its
kernels do

40%

30%
20%

10% 4| \

BH BH(tree) DMR MST SP

“Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic

® Control Hazard Scoreboard Hazard Pipe Stall: LSU
Pipe Stall: Other Divergence Imbalance
Busy

ications: Other Irregular

100%

90% In general, less
Barnes-Hut looks divergence penalty
80% quite reqgular... than expected

70%
60%

50%

...but not all of Its
kernels do

40%

30%

20%

10%

0%

]] “Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic
- ® Control Hazard Scoreboard Hazard Pipe Stall: LSU
= Pipe Stall: Other Divergence Imbalance

Busy

100%

90% In general, less

Barnes-Hut looks divergence penalty
80% quite reqgular... than expected

70%

Synchronization/atomics
penalty also somewhat below
50% expectation

60%

...but not all of Its
kernels do

40%

30%

20%

10%

BH BH(tree) DMR

]] “Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic
- ® Control Hazard Scoreboard Hazard “ Pipe Stall: LSU
= Pipe Stall: Other Divergence Imbalance

Busy

100%

90% In general, less
Barnes-Hut looks divergence penalty
80% quite reqgular... than expected

70%

Synchronization/atomics
penalty also somewhat below
50% expectation

60%

...but not all of Its
kernels do

30% | Source code optimizations
already addressing these
bottlenecks more effectively than
memory-related slowdown

40%

20%

10%

BH BH(tree) DMR

|dle: Sync Barrier Idle: Mem Barrier Idle: Atomic

]]
% Control Hazard Scoreboard Hazard Pipe Stall: LSU
Pipe Stall: Other Divergence Imbalance

Busy

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

BH BH(tree) DMR MST SP

Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic
Ap p I I catl 0 "S Se m I Regu I ar % Control Hazard Sc.oreboard Hazard Pipe Stall: LSU
Plpe Stall: Other Divergence Imbalance
100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

FPC TSP NB MC

Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic

® Control Hazard Scoreboard Hazard Pipe Stall: LSU
Plpe Stall: Other Divergence Imbalance

100%
90%
80%
Regular codes have
20% mostly fully-occupied
cycles
60%
50%

40%

30%

20%

10%

I o

FPC TSP NB MC

0%

“Idle: Sync Barrier

Appllcatlﬂﬂs Semi- Regular il

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Regular codes have
mostly fully-occupied
cycles

Computation pipeline
hazards (rather than LS)

Idle: Mem Barrier
Scoreboard Hazard
Divergence

Idle: Atomic

“ Pipe Stall: LSU

Imbalance

Hardware Modifications

Latency Scaling

l

= = = = =
» U o0 N ©
|

]

Speedup (IPC)
=
N W

=
|

(Y

O
o)
|

O
(0.0
|

BFS BES-unroll BFS-wiw BFS-wic BH DMR MST SP SSSP SP-win SSSP-wlc FPC TSP NB MC

© O
N N
| |

M 2x L2 Latency 2x DRAM Latency 1/2x DRAM Latency W 1/2x L2 Latency ¥ No Latency

Latency Scaling

* Reqgular codes largely insensitive to latency

 FPC: quite sensitive to L2 latency (streaming code, high spatial locality)

e Qverall, L2 latency appears more important than DRAM latency
* Even for inputs with working set sizes several times larger than the L2

1.8
1.7

1.6

15

1.4
& 13

1 2

0.8 BES roll BFS-wiw BFS-wic BH DMR MST SSSP sp win sssp wlc EPC
0.7

0.6

)

d p(l

[N

B 2x L2 Latency 2x DRAM Latenc 1/2x DRAM Latenc W 1/2x L2 Latency ¥ No Latency

43

Bandwidth Scaling

1.5 -

1.4

-
w

-
N

.
(WY

Speedup (IPC)
(WY
|
|
|

O
o)

BFS BFS- BFS-wlw BFS-wlc BH DMR MST SP SSSP
nroll

5SP-win 88SP-wlc FPC TSP NB MC

O
00

0.7 .

0.6 -

M 1/2x L2+DRAM Bandwidth ™ 1/2x L2 Bandwidth 1/2x DRAM Bandwidth 2x DRAM Bandwidth ™ 2x L2 Bandwidth ™ 2x L2+DRAM Bandwidth

Bandwidth Scaling

o Similarly to latency results, most applications are much more sensitive to L2
banadwidth than to DRAM bandwidth

* Regular/vector codes largely unaffected by bandwidth scaling

* For tested inputs, the L2 is large enough that sufficient L2 bandwidth keeps
enough warps able to execute

1.5

1.4
13 | | ‘
| lBFS BFS-wlw BFS-wlc [[| | |SSSP 'SP win I;P wlc FPC TSP NB MC

W 1/2x L2+DRAM Bandwidth ¥ 1/2x L2 Bandwidth ~ 1/2x DRAM Bandwidth ~ 2x DRAM Bandwidth ™ 2x L2 Bandwidth ™ 2x L2+DRAM Bandwidth

Speedup (IPC)
o o o = =
~ o0 ©0 = = N

o
o

45

Gache Size Scaling

1.6 -

1.5 -

—
N
|

| |] . T N I .

Speedup (IPC)
[N
—

1 B — | | .\
09 -
08 - BFS FS- S-wlw BFS-wlc BH DMR SSSP SSSP-wln SSSP-wlc FPC TSP NB MC

' nroll
0.7 -
0.6 -

W1/2x L1 Cache " 1/2x L2 Cache " 2x L2 Cache M 2x L1 Cache

Gache Size Scaling

e Codes sensitive to L2 bandwidth are also sensitive to L1D size

* Most irregular codes hurt more by a smaller LT than a smaller L2
* Regular codes are the opposite, but the effect Is much less pronouncead

1.6
1.5

1.4

=
w

[N
N

S wlw BFS-wlc BH DMR MST SP SSSP SSSP-wlIn SSSP-wlc FPC TSP NB MC

Speedup (IPC)
[
= [

o
©

o
0o

nroII

o
N

o
o

M 1/2x L1 Cache " 1/2x L2 Cache " 2x L2 Cache M 2x L1 Cache

47

Warp Scheduling

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

* GPUs cannot hide latency without
multiple warps from which to issue on
every SM

time

* Multithread instructions from inflight warps

* |f a warp encounters a long operation
(e.g., RAW hazard on load data or stall), SM can issue from another
warp instead

* |f no other warp can issue its next instruction = underutilization

Warp Scheduling

* Selection policy to choose next warp to issue can significantly
mpact GPU’s ability to hide latencies
* Round Robin (RR) GPGPU-Sim
+ Greedy-Then-Oldest (GTO) 4~ defout
o Jwo-Level Active Scheduler

* Round-robin schedulers: Good for preserving inter-warp locality,
but warps tend to arrive at long-latency operations in close time
oroximity

* Greedy schedulers: Lose memory access locality as warps run
progressively out-of-sync, but mitigate the all-stall-together issue

49

Warp Scheduling

Round Robin [RR]

1.2

Speedup (IPC)

Warp Scheduling

RR improves
all the reqular
& semi-reqular

codes

Round Robin [RR]

Speedup (IPC)

Warp Scheduling

KK tmproves
., all the reqular
& semi-reqular
codes

Round Robin [RR]
1.2

Speedup (IPC)

o (370 scheduling superior for irreqular codes, which often
possess little inter-warp locality

Warp Scheduling

* Two-level scheduling
(Narasiman et al., MICRO’11)
splits active warps on each
SM into fetch groups (FGSs)

* Prioritize issue from single
-G until stal

* Designed to balance pros
and cons of greedy vs. RR
scheduling

=
1.3
a r p c e u I n g 2-Level: Outer = RR, Inner = RR
1.2

1.1

» Two-level scheduling E . l I I l l I -
(Narasiman et al., MICRO’11) & | A & S QQ

splits active warps on each e
SM into fetch groups (FGs) .,

 Prioritize Issue from Sing‘e MFG=2 WFG=4 "FG=8 FG=16
-G until stal

Q®
1 S
0.7 & S

0.4

* Designed to balance pros
and cons of greedy vs. RR
scheduling

[S—

|
a rp ' e u I ng - 2-Level: Outer = RR, Inner = RR
1.2

* Two-level scheduling S o8
. y § 0.8 < {\@.\.\\ = : N § @3\ X q? ~ O) /\\w &Qb /\c,§2 W ®(,
(Narasiman et al.,, MICRO’11) & &= o & & ° e
splits active warps on each
SM into fetch groups (FGs) .,
* Prioritize issue from single
:G Uﬂtl‘ Sta‘ 11 2-Level: (i:ter=RR, Inner = GTO
1
» Designed to balance pros . I . l | |
and cons of greedy vs. RR T F e s S FEFEEE
: < K ? S S
scheduling e |° °
§0.6
0.5
0.4
0.3
BFG=2 FG=4 FG=8 FG =16

[S—

N
a rp c e u I ng - 2-Level: Outer = RR, Inner = RR
1.2

1
* Two-level scheduling S o
: S 08 B > \© & A S X & C s 8 <
(Narasiman et al., MICRO’11) & = .° & &OF P

splits active warps on each
SM into fetch groups (FGs)

* Prioritize issue from single
:G unt” Sta‘ hd 2-Level: Outer = RR, Inner = GTO

* Designed to balance pros
and cons of greedy vs. RR B S SRR S RO B O B S

i 2 & <
scheduling s
2
= .
3.0t>

o Appears ineffective
for irreqular codes

FG =2 FG=4 FG=8 FG =16

Gonclusions
%

\ =
CA 2 ¢ .
\ My

Recap

* Frst microarchitectural, cycle-level-simulation-
based workload characterization focusing L
on irregular GPU kernels

* FIndings

* |rregular codes have more load imbalance, branch divergence, and
uncoalesced memory accesses than regular codes

* For most applications, less branch divergence, atomics, and
synchronization penalty than expected

* Software designers successfully addressing these performance issues

hey Takeaways for GPU Architects

 Improved memory and last-level cache latency and bandwidth, enhanced
cache effectiveness are the most important factors for supporting irregular
codes on GPUs

* Improving L2 latency/bandwidth appears more important than improving DRAM
atency/bandwidth

o Strategies to reduce coalescing pipeline penalty unlikely to help without corresponding
INncreases in memory bandwidth

e Simple warp schedulers (e.q., two-level active scheduling) that improve regular
codes are ineffective for irregular codes

* (Greedy scheduling is the best simple strategy for these codes

* Addressing slowdown via warp scheduling likely to require more complex schedulers

THANRK YOU:

Acknowledgements:

[]
NSF Graduate Research Fellowship Program (grant 1144466)
NSF grants 1141022, 1217231, 1406304, and 1438963
] Grants and gifts from NVIDIA Corporation

PC vs. Runtime

8.E+07
7.E+07
6.E+07
5.E+07

v

S 4.E+07

9.4

S 3.E+07
2.E+07
1.E+07
0.E+00

M BFS MW BFS-unroll

B BFS-wlw M BFS-wlc

of cycles

3.E+08

3.E+08

2.E+08

2.E+08

1.E+08

5.E+07

0.E+00

W SSSP MSSSP-win W SSSP-wlc

Input Sizes

Application

Name
USA road d.NY

USA road d.BAY
rmat200k-1600k
rmat264k-734k
494,000 1 (seed=7)
494,000 1 (seed=1)
massive.2
30k
25k
USA road d.NY
USA road d.BAY
rmat30k-250k
random-4200-1000-3-seed23.cnf
random-4200-1000-3-seed27.cnf
random-4200-1000-3-seed71.cnf
obs_error
num_plasma
msg_lu
att48.tsp 15,000
eil51.tsp 15,000
pr76.tsp 20,000
23,040 1 (seed=7)

23,040 1 (seed=19)
23,040 1 (seed=43)
(default)

Description
NY roads (264K nodes, 734K edges)

SF Bay Area roads (321K nodes, 800K edges)
R-MAT (200K nodes, 1600K edges)
R-MAT (264K nodes, 734K edges)
494K bodies, 1 timestep
494K bodies, 1 timestep
100.3K triangles, maxfactor=10
60K triangles, maxfactor=10
50K triangles, maxfactor=10
NY roads (264K nodes, 734K edges)
SF Bay Area roads (321K nodes, 800K edges)
R-MAT (30K nodes, 250K edges)
4.2K clauses, 1K literals, 3 literals/clause
4.2K clauses, 1K literals, 3 literals/clause
4.2K clauses, 1K literals, 3 literals/clause
60 MB dataset, 30 blocks, 24 warps/block, dimensionality=24
34 MB dataset, 30 blocks, 24 warps/block, dimensionality=2
X MB dataset, 30 blocks, 24 warps/block, dimensionality=>5
48 cities, 15K restarts
51 cities, 15K restarts
76 cities, 20K restarts
23,040 bodies, 1 timestep
23,040 bodies, 1 timestep
23,040 bodies, 1 timestep
SDK input w/ 262,144 paths

Working Set

3899 kB
4380 kB
7031 kB
3898 kB
7718 kB
7718 kB
7840 kB
4688 kB
3906 kB
3898 kB
4380 kB
1093 kB
414 kB
414 kB
414 kB
60 MB
34 MB
186 MB
9 kB
10 kB
23 kB
360 kB
360 kB
360 kB
1024 kB

L2 Size Multiplier

5.08
5.70
9.16
5.08
10.05
10.05
10.21
6.10
5.09
5.08
5.70
1.42
0.54
0.54
0.54
78.12
44.277

242.19

0.01
0.01
0.03
0.47
0.47
0.47
1.33

Stall C

ause Prioritization

7N
/ .

N
Does warp wuth\ _~Is one in the .
Dl warp-.
d 2 2 p ~ valid instruction —>» < shadow of a f&(control hazard)
issue’ no
\ exist? “control hazard?”
‘Vwo
32 actlx\\/\e full b Is;ne stalled _i
u 2 _ atomic
\threads’? ye issue v for an atomlc
\ *no
_-Did one such warp pass. Y§S KL pipe stall
E “~_the scoreboard? full functional unit
Cd'ver gence) IS one waltmg for a. yesa 4 memory
memory barrier?~ \ barrier
‘ng /" scoreboard hazard p
\Ukely RAW on memory data
. . l'"s"’ one at\\é S &
Stall Cause Priority Order: < Synchromz ation V&S synchromzatlorv
Pipeline stall —> Scoreboard hazard —> __barrier? - ____ barrier
Control hazard —> Atomic —> o
Memory barrier —> Sync barrier —> v]
No valid instruction " no valid inst

" (control hazard)

Histogram: Deepest Pipeline Stage

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

BFS BFS- BFS-wlw BFS-wilc BH BH(tree) DMR MST SP SSSP SSSP-win SSSP-wic FPC TSP NB MC
unroll
Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic Control Hazard Scoreboard Hazard
Pipe Stall: LSU Pipe Stall: Other Divergence Imbalance Busy

60

Histogram: Most Impacted Warps

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

BFS BFS-unroll BFS-wlw BFS-wlc DMR MST SP SSSP SSSP-win SSSP-wlc FPC TSP NB MC
Idle: Sync Barrier ldle: Mem Barrier |dle: Atomic Control Hazard
Scoreboard Hazard Pipe Stall: LSU Pipe Stall: Other Divergence

61

—
(9,
o

IPC Comparison for Similar Inputs
S
o

w
o

S 8 ¢ - & N L
¥ & & ¢ & & & & F & & g

; S
& 9 ® & 5

o

Input Variation: Simifar Inputs : ""
|

100%
90%
80%
70%
60%
50%
40%
30%

20%

a8 HR A8 == 11 L& 1

O O A O O A N O O O O e W PN
(_,«oz &o'z’6 \«ofb Qo'bb & ‘o'z>b gxo'b ko'bb Q"’Q:z\s@z <\<z§"‘"<)’\&Qk ,\«ofb &o'z>t> Q(_,e"’q £ & ,\o'z’b & &o'bb & o'z’b ¢.8 & & eg,"’e%fo@e
Ff L N Ny TS ¢ P 77 P8 SN N LS N
U SS FE L > R S &
S S S S <
Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic % Control Hazard Scoreboard Hazard

Pipe Stall: LSU Pipe Stall: Other Divergence Imbalance Busy

Input Variation: Road Networks vs. R-MAI

100%
90%
80% @ 120
S
70% —
° < 100
60% o
O
50% S £ 80
-
[
40% > =
a 60
30% o
~—
| | r { =
20% - 1 -g 40
p— L
©
10% o
L - —t € 20
0% | - — R — - O
N N3 N N3 N N3 N N2 N g N N3 N N3 N N2
N Q Q Q Q Q =S
S & > & 'abe & > & » P @6'5\ & > & S & 0
07 ¢ L @¥ IS L ¥ & & L Q¥ ¥
& %QQ N ,\90 & ’\90 & ,190 & e Y ,90 & ,\90 S ,‘90 BFS BFS-unroll BFS-wlw BFS-wlc MST SSSP SSSP-win SSSP-wic
v & R & & 5t & » & s & Tl v &
[< N & & N o 9 4\\0 N
S & il > & &
& N £ S S
Idle: Sync Barrier Idle: Mem Barrier Idle: Atomic % Control Hazard Scoreboard Hazard

Pipe Stall: LSU Pipe Stall: Other Divergence Imbalance Busy

My GPGPU-Sim Toolkit

e By default, GPGPU-SIm gives you ~3 GB of this (per run) - :
durnped to stdout: Management of multiple runs with

_ JON \ sssp-wic_USA-road-d.NY.gr_Default.PreferS...ome/molly/thesis_sims_xmasbreak/logs) - GVIM d iﬁe re nt b e n C h m a r kS y i n p u t S y a n d

File Edit Tools Syntax Buffers Window Help

SAD& se KB A2eaad nia B0 configs and feasible data analysis

spgpu_stall _shd mem[s mem][bk conf] = 128

gpgpu stall shd mem[gl mem)|[bk conf] = 0

gpgpu_stall_shd _mem[gl memjﬁgual_stall] 57776 .

gpgpu_stall_shd_mem[g_mem_ld] [coal_stall re u I re

gpgpu_stall_shd_mem[g_mem_1ld][mshr ¢ .
. _

gpgpu_stall_shd _mem[« n—l_ld][w 1t_

g_
g_
gpgpu_stall shd mem[g mem ld][wb icnt rc]

gpgpu_stall_shd_mem[g_mem_ld][wb_rsrv_fail] = G ' '
gpgpu_stall_shd_mem[g_mem_st][coal_stall] 57560 -1 Re reSSIOn I nfraStru Ctu re
gpgpu stall shd mem{g mem st][mshr rc] =0 n
gpgpu_stall_shd_mem[g_mem_st][icnt_rc] = 0
gpgpn_stal‘_ hd _mem [j_m T_st][wh_lcnt_rc

(g

§] [
ST supporting multiple cores, smart
|:_”:u_1;:|1_sta;1'._ h(i _mem 1 _mem 1(1][((1‘11 ,t:«xH = Q upp y
gpgpu_stall shd mem[1l mem 1d][ms} 1r”r::] =0
gpgpu_stall_shd_mem L _mem_ld][1cnt_rc] =0

|
| . . .
'ZH'-”]FIH_%t:{l_’_ hd rr~r1[1 mem hi][tn 1'.'nt_|'n'] = (
S L e directory and log file hanaling
g;:u._u;u_stdl’_ hri n~|1[1 mem S][(r.dl ,1111] = @ y
gpgpu_stall shd mem[Ll mem ﬁ‘][quf rc] 0 . . o .
gpgpu_stall_shd_mem[Ll_mem_st][1cnt_rc] ¢)

gpgpu_stall shd mem[l mem st][wb icnt rc] = 0 per_SIm Conflg SpeCIflcatIOﬂ

gpgpu stall shd mem[L mem st][wb rsrv fail] 0

gpu_reqg_bank_co nl--t_ftalls = 0

Pipe Stall Distribution

LSU: 620207 SP:23060 SFU:9846

2. Log file parser to auto-
WO Id SyncBar: 14437 WO Idle MemBar:0 WO Idle Atomic:241 WO Idle CtrlHaz:135 WO Idle Nolnst: 1094189 "

oY wo

WO_Scb_RAW: 25703 WO_Scb_WAW: 12 WO_Scb_Pred:319 WO _Stall:98578 WL:77 W2:24 W3:82 W4:16 W5:0 W6:0

O W8:0 W9:0 WI1O0:0 W1l:0 W12:0 W13:0 W14:0 WL5:0 W16:0 WL7:0 W18:0 W19:0 W20:0 W21:0 W22:0 W23:0 W24:0

create .xIsx spreadsheets with

1:10929 2:4096 3:0 4:0 5:0 6:0 7:0 8:0 9:0 10:6 11:0 12:0

nA A%.n : X y. A 4. A P e . O - . A "G . A
PACHC 21:0 22:0 23:0 24:0 25:0 20:0 2/7:0 28:0 PAHC

30:0 31:0 32:0 1
Global/Local Load Access Count Distribution: h I h _Va‘ u e d ata re — d rawn
] 3'7 2:26 3:11 4:0 5:0 6:0 7:0 8:0 9:0 10:606 11:0 12:0 3:0 $:0 15:0 65:0 7:0 18:0 19:0 ’

21:0 22:0 23:06 24:0 25:0 26:0 27:0

\‘lenl ‘TDIF Access Count Distribution

‘0 5:0 6:0 7:0 8:0 9:0 lH 0 11:0 2:0 3:0 4:0 5:0 16:06 /:0 8:0 9:0 20
) 24:0 25:0 26:0 27:06 28:0 29:6 30:0 31:(32:0

Some Fun Numbers

* [he results presented in the graphs and charts in this thesis
represent simulation times that on a single CPU would have
consumed approximately...

22,000+ hours
-or- 922+ days

-0or- 30+ months!!!

