
Characterizing the Performance Bottlenecks of
Irregular GPU Kernels

Molly A. O’Neil

M.S. Candidate, Computer Science

Thesis Defense
April 2, 2015

Committee Members:
Dr. Martin Burtscher

Dr. Apan Qasem
Dr. Dan Tamir

Highlights
• GPUs are everywhere — and really good at 

accelerating certain types of codes (regular, 
vector-based) in energy/cost-efficient manner
• But lots of emerging, important codes are irregular in nature
• Nobody knows yet how to efficiently run these codes on accelerators

• This thesis asks: What are the biggest hurdles to enabling GPUs
to efficiently accelerate these codes?
• Answer can help hardware designers broaden the acceleration

capabilities of GPUs

2

Background

3

[ORNL Titan]

• GPUs as general-purpose accelerators
• Ubiquitous in HPC/supercomputers
• Spreading in PCs and mobile devices
• Performance and energy-efficiency benefits…

Background

• …when code is well-suited!
• Regular (input independent) vs. irregular (input determines control flow

and memory accesses)
• Lots of important irregular algorithms

• Social networks, compilers, data mining, physics simulation, etc.
• More difficult to parallelize, map less intuitively to GPUs

3

[ORNL Titan]

• GPUs as general-purpose accelerators
• Ubiquitous in HPC/supercomputers
• Spreading in PCs and mobile devices
• Performance and energy-efficiency benefits…

Motivation
• GPUs likely to continue to grow in importance

• Need to better understand irregular applications’ 
specific demands on GPU hardware
• How they differ from those of regular codes

• Identify most significant architectural limitations for irregular GPU
kernels
• To help software developers better optimize irregular codes
• As a baseline for exploring hardware support for broader classes of

general-purpose codes

4

[NVIDIA]

Related Literature
• Simulator-based characterization studies

• Bakhoda et al. (ISPASS’09), Goswami et al. (IISWC’10), Che et al.
(IISWC’10), Blem et al. (EAMA’11), Lee and Wu (ISPASS’14)
• CUDA SDK, Rodinia, Parboil (no focus on irregularity)

• IISWC’14: O’Neil and Burtscher 1 [LonestarGPU]; Xu et al. [graph codes]
• Emulator studies (also SDK, Rodinia, Parboil)

• Kerr et al. (IISWC’09), Wu et al. (CACHES’11)
• Hardware performance counters

• Burtscher et al. (IISWC’12) [LonestarGPU], Che et al. (IISWC’13)

5

[1] O’Neil and Burtscher, “Microarchitectural Performance Characterization of Irregular GPU Kernels,” IISWC 2014.

GPU Review

CUDA GPUs
• Two-level compute hierarchy

• Streaming multiprocessors (SMs) each 
composed of tightly-coupled processing 
elements (PEs)

• CUDA program specifies the behavior of a kernel grid, the threads of
which are grouped into thread blocks and dynamically assigned to SMs
• Threads within a block share on-chip cache and fast synchronization

• PEs execute warps (sets of 32 adjacent threads that execute as a
vector instruction operating conditionally on 32 elements)
• PEs fed with warps in multithreading style, interleaving between blocks

7

[CUDA C Programming Guide, NVIDIA]

Branch Divergence
• To execute in parallel, threads in a warp must 

share identical control flow
• If not, execution serialized by hardware into 

smaller groups of threads such that all threads 
in subset execute the same instruction

• Good performance requires minimal branch divergence

8

Branch Divergence
• To execute in parallel, threads in a warp must 

share identical control flow
• If not, execution serialized by hardware into 

smaller groups of threads such that all threads 
in subset execute the same instruction

• Good performance requires minimal branch divergence

8

Irregular control flow makes divergence difficult to avoid!

Memory Coalescing
• For good performance, memory accesses within a warp must be

coalesced (fall within the same cache line)
• If a warp instruction touches multiple 128-byte segments, accesses to

additional lines are serialized
• Possible for single warp instruction to result in 32 separate transactions

9

[CUDA C Best Practice Guide, NVIDIA]

Memory Coalescing
• For good performance, memory accesses within a warp must be

coalesced (fall within the same cache line)
• If a warp instruction touches multiple 128-byte segments, accesses to

additional lines are serialized
• Possible for single warp instruction to result in 32 separate transactions

9

[CUDA C Best Practice Guide, NVIDIA]

Irregular access patterns make coalescing difficult to achieve!

Cache & Memory Hierarchy
• All SMs share global memory (DRAM) as well

as a unified L2 cache (GTX 480: 768 kB)

• Each SM has a programmer-controlled
shared memory (16 kB - 48 kB)

• Shared between blocks resident on SM

• Each Fermi SM has incoherent L1 data
cache (16 kB - 48 kB)

10

[Fermi Whitepaper, NVIDIA, 2009]

Methodology

[GT200, PCPerspective.com]

Problem Statement
• For a set of irregular and regular applications, understand the impact of

control-flow and memory-access irregularity on…
• Branch divergence
• Memory coalescing
• Cache effectiveness

12

Problem Statement
• For a set of irregular and regular applications, understand the impact of

control-flow and memory-access irregularity on…
• Branch divergence
• Memory coalescing
• Cache effectiveness

12

Code behavior

Problem Statement
• For a set of irregular and regular applications, understand the impact of

control-flow and memory-access irregularity on…
• Branch divergence
• Memory coalescing
• Cache effectiveness

12

Code behavior

Hardware performance

Problem Statement
• For a set of irregular and regular applications, understand the impact of

control-flow and memory-access irregularity on…
• Branch divergence
• Memory coalescing
• Cache effectiveness

12

• Assess the sensitivity of these applications to hardware design
parameters such as…
• Cache and memory latency
• Cache and memory bandwidth
• Cache size
• Coalescing behavior
• Warp scheduling policy

Code behavior

Hardware performance

Hardware parameters
critical to the

performance factors
above

Objective
• My goal: From patterns of behavior in studied benchmarks, abstract  

an understanding of the impact of irregular code (data structures, 
algorithms, implementation choices) on hardware performance

• NOT my goal: Determine the best particular configuration of hardware
parameters for this particular set of codes and GPU device
• Why not?

• No claim of completeness in benchmark suite
• GPU microarchitecture (and macro-architecture!) still in flux

• I want to identify the major bottlenecks in hardware where architects should
be focusing their attention
• Versus the sources of performance loss that programmers can address on their own

13

GPGPU-Sim
• Cycle-level microarchitectural simulator of a CUDA GPU

• Functional PTX simulator (NVIDIA’s virtual ISA)
• Timing model for the SMs, caches, 

shared memory, interconnect network, 
memory partitions (including L2 cache), 
and off-chip DRAM

• GPGPU-Sim v. 3.2.1
• GTX 480 (Fermi) configuration
• Plus bug fixes, additional operations, extra performance counters, and new

hardware configuration options

14

[Aamodt and Fung, GPGPU-Sim v3.x Manual]

Applications

Irregular Applications (LonestarGPU)
• Breadth-First Search (BFS)

• Labels each node in graph with
minimum level from start node

• BFS: Topology-driven
• BFS-unroll: Multiple frontiers per

iteration w/ local worklist
• BFS-wlw: Data-driven, node per

thread
• BFS-wlc: Data-driven, edge per

thread (Merrill et al., PPoPP’12)

16

• Barnes-Hut (BH)
• Approximate N-body algorithm

using octree to decompose
space around bodies

• Mesh Refinement (DMR)
• Iteratively transforms ‘bad’

triangles by retriangulating
surrounding cavity

[LonestarGPU]

Irregular Applications (LonestarGPU)

17

• Minimum Spanning Tree
(MST)
• Applying Boruvka’s algorithm,

successively contracts minimum
weight edge until single node

• Survey Propagation (SP)
• Heuristic SAT-solver based on

Bayesian inference, represents
Boolean formula as bipartite
graph of variables and clauses

• Single-Source 
Shortest Paths (SSSP)
• Labels each node in graph with

minimum level from start node
• SSSP: Topology-driven
• SSSP-wln: Data-driven, node

per thread
• SSSP-wlc: Data-driven, edge

per thread

[StackExchange.com]

Semi-Regular Applications
• FP Compression (FPC) 1

• Lossless data compression for
DP floating-point values

• Irregular control flow

18

• Traveling Salesman (TSP) 2,3
• Find minimal tour in graph using

iterative hill climbing
• Irregular memory accesses

[1] O’Neil and Burtscher, “Floating-Point Data Compression at 75 Gb/s on a GPU,” GPGPU 2011.
[2] O’Neil, Tamir, and Burtscher, “A Parallel GPU Version of the Traveling Salesman Problem,” PDPTA 2011.
[3] O’Neil and Burtscher, “Rethinking the Parallelization of Random-Restart Hill Climbing,” GPGPU 2015.

[AnalyticBridge.com]
[Applegate et al.]

Regular Applications

19

• Monte Carlo (MC)
• Evaluates fair call price for set of

options using Monte Carlo
method

• CUDA SDK version

• N-Body (NB)
• N-body algorithm using all-to-all

force calculation
• Texas State ECL version

(outperforms SDK version)

Regular Applications

19

• Monte Carlo (MC)
• Evaluates fair call price for set of

options using Monte Carlo
method

• CUDA SDK version

• N-Body (NB)
• N-body algorithm using all-to-all

force calculation
• Texas State ECL version

(outperforms SDK version)

• Input for each benchmark:
• Small enough to result in reasonable simulation runtimes (<2 weeks) but large

enough to keep simulated hardware busy
• Where possible, working set ≥ 5 times the default L2 cache size

Results & Analysis

Application Performance

21

Peak: 480 IPC

Peak  
IPC

Application Performance

• Strong correlation between 
regularity of code and IPC

• BH is an exception 
(runtime-dominating kernel has been regularized)

• No simple or fixed rule to delineate the performance of irregular
and regular codes

22

Sources of 
Performance Limitation

Sources of 
Performance Limitation

Divergence + Un-C
oalesing

are not factors we have to

consider when writing

parallel CPU code!

Branch Divergence

24

Full 
occupancy

Branch Divergence
• Irregular codes more  

diverged
• But only two <~50%  

occupied
• BH an outlier again

25

Branch Divergence

26

Branch Divergence
• Irregular codes more  

diverged
• But only two <~50%  

occupied
• BH an outlier again

27

• Only a few codes >~10% 
speedup even with 
perfect warp formation

Branch Divergence
• Irregular codes more  

diverged
• But only two <~50%  

occupied
• BH an outlier again

27

• Only a few codes >~10% 
speedup even with 
perfect warp formation

Branch Divergence
• Irregular codes more  

diverged
• But only two <~50%  

occupied
• BH an outlier again

27

• Only a few codes >~10% 
speedup even with 
perfect warp formation

Memory Coalescing

28

Fully
coalesced

Memory Coalescing
• Regular applications are fully

coalesced
• TSP: byte-granular stores to same

word serialized by hardware
• BH tree construction, SP, and SSSP-

wln all very un-coalesced
• Very scattered access patterns
• Topological BFS + SSSP quite

coalesced, but…

29

Memory Coalescing

30

Memory Coalescing

31

• Regular applications are fully
coalesced

• TSP: byte-granular stores to same
word serialized by hardware

• BH tree construction, SP, and SSSP-
wln all very un-coalesced
• Very scattered access patterns
• Topological BFS + SSSP quite

coalesced, but…

Memory Coalescing

31

• High load instruction count → even a
small amount of un-coalescing hurts

• Regular applications are fully
coalesced

• TSP: byte-granular stores to same
word serialized by hardware

• BH tree construction, SP, and SSSP-
wln all very un-coalesced
• Very scattered access patterns
• Topological BFS + SSSP quite

coalesced, but…

Memory Coalescing
• Two components to coalescing

1. Pipe stall or replay necessary to perform cache lookup, set up
memory request, etc.

2. Extra memory traffic

• New GPGPU-Sim configuration: No Coalesce Penalty (NCP)
• Artificially removes the pipeline stall for non-coalesced accesses
• No other improvement to memory pipeline to handle additional traffic
• Not intended to be a realistic hardware improvement

32

[CUDA C Best Practice Guide, NVIDIA]

Memory Coalescing

33

Memory Coalescing

34

• Applied NCP config by itself as well as in combination with increased cache buffers
• Removing pipeline penalty alone does little good (and sometimes hurts)

• Improving miss-handling capacity in the cache doesn’t help much, either!

• H/W improvements aimed at reducing coalescing pipeline penalty unlikely to help
irregular codes unless combined with improved memory bandwidth or cache usage

Memory Coalescing

34

• Applied NCP config by itself as well as in combination with increased cache buffers
• Removing pipeline penalty alone does little good (and sometimes hurts)

• Improving miss-handling capacity in the cache doesn’t help much, either!

• H/W improvements aimed at reducing coalescing pipeline penalty unlikely to help
irregular codes unless combined with improved memory bandwidth or cache usage

 Byte-granular  
stores

Cache Effectiveness

35

• Very high miss ratios (most
>50% in the L1)

• GPUs and CPUs have caches
for different reasons

Cache Effectiveness

35

• Very high miss ratios (most
>50% in the L1)

• GPUs and CPUs have caches
for different reasons

• Irregular codes look very
different than regular codes
• Lots of pointer chasing
• Not much spatial locality

• SP has highest average
access count of these codes 
 → absurdly high miss rate

Cache Effectiveness

35

• Very high miss ratios (most
>50% in the L1)

• GPUs and CPUs have caches
for different reasons

SP=939

Individual Applications

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Atomic
Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Scoreboard Hazard

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Pipeline Stall: LSU

Scoreboard Hazard

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Pipeline Stall: Non-LSU

Pipeline Stall: LSU

Scoreboard Hazard

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Divergence
Pipeline Stall: Non-LSU

Pipeline Stall: LSU

Scoreboard Hazard

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Interblock Imbalance
Divergence

Pipeline Stall: Non-LSU

Pipeline Stall: LSU

Scoreboard Hazard

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier

Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each
benchmark
• In issue stage of each SM
• Based on active threads in warp
• If no issue: track deepest pipeline

stage responsible for no-issue

37

Busy

Interblock Imbalance
Divergence

Pipeline Stall: Non-LSU

Pipeline Stall: LSU

Scoreboard Hazard

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier

Applications

38

ApplicationsApplications: BFS & SSSP

38

ApplicationsApplications: BFS & SSSP

38

Large memory
access penalty

in nearly all of the
irregular apps

ApplicationsApplications: BFS & SSSP

38

Data-driven codes have high
synchronization penalty

Large memory
access penalty

in nearly all of the
irregular apps

ApplicationsApplications: BFS & SSSP

38

Data-driven codes have high
synchronization penalty

Additional atomic
operations add mostly

RAW hazard stalls

Large memory
access penalty

in nearly all of the
irregular apps

Applications

39

ApplicationsApplications: Other Irregular

39

ApplicationsApplications: Other Irregular

39

Barnes-Hut looks
quite regular…

ApplicationsApplications: Other Irregular

39

Barnes-Hut looks
quite regular…

…but not all of its
kernels do

ApplicationsApplications: Other Irregular

39

Barnes-Hut looks
quite regular…

…but not all of its
kernels do

In general, less
divergence penalty

than expected

ApplicationsApplications: Other Irregular

39

Barnes-Hut looks
quite regular…

…but not all of its
kernels do

In general, less
divergence penalty

than expected

Synchronization/atomics
penalty also somewhat below

expectation

ApplicationsApplications: Other Irregular

39

Barnes-Hut looks
quite regular…

…but not all of its
kernels do

In general, less
divergence penalty

than expected

Synchronization/atomics
penalty also somewhat below

expectation

Source code optimizations
already addressing these

bottlenecks more effectively than
memory-related slowdown

Applications

40

ApplicationsApplications: (Semi-)Regular

40

ApplicationsApplications: (Semi-)Regular

40

Regular codes have
mostly fully-occupied

cycles

ApplicationsApplications: (Semi-)Regular

40

Regular codes have
mostly fully-occupied

cycles

Computation pipeline
hazards (rather than LS)

Hardware Modifications

Latency Scaling

42

Latency Scaling

43

• Regular codes largely insensitive to latency

• FPC: quite sensitive to L2 latency (streaming code, high spatial locality)

• Overall, L2 latency appears more important than DRAM latency
• Even for inputs with working set sizes several times larger than the L2

Bandwidth Scaling

44

Bandwidth Scaling

45

• Similarly to latency results, most applications are much more sensitive to L2
bandwidth than to DRAM bandwidth
• Regular/vector codes largely unaffected by bandwidth scaling

• For tested inputs, the L2 is large enough that sufficient L2 bandwidth keeps
enough warps able to execute

Cache Size Scaling

46

Cache Size Scaling

47

• Codes sensitive to L2 bandwidth are also sensitive to L1D size

• Most irregular codes hurt more by a smaller L1 than a smaller L2
• Regular codes are the opposite, but the effect is much less pronounced

Warp Scheduling
• GPUs cannot hide latency without 

multiple warps from which to issue on  
every SM
• Multithread instructions from inflight warps
• If a warp encounters a long operation 

(e.g., RAW hazard on load data or stall), SM can issue from another
warp instead

• If no other warp can issue its next instruction → underutilization

48

[Fermi Whitepaper, NVIDIA, 2009]

Warp Scheduling
• Selection policy to choose next warp to issue can significantly

impact GPU’s ability to hide latencies
• Round Robin (RR)
• Greedy-Then-Oldest (GTO)
• Two-Level Active Scheduler

• Round-robin schedulers: Good for preserving inter-warp locality,  
but warps tend to arrive at long-latency operations in close time
proximity

• Greedy schedulers: Lose memory access locality as warps run
progressively out-of-sync, but mitigate the all-stall-together issue

49

 GPGPU-Sim  
default

Warp Scheduling

50

Warp Scheduling

50

RR improves  
all the regular
& semi-regular

codes

Warp Scheduling

50

• GTO scheduling superior for irregular codes, which often
possess little inter-warp locality

RR improves  
all the regular
& semi-regular

codes

Warp Scheduling
• Two-level scheduling

(Narasiman et al., MICRO’11)
splits active warps on each
SM into fetch groups (FGs)
• Prioritize issue from single

FG until stall
• Designed to balance pros

and cons of greedy vs. RR
scheduling

51

Warp Scheduling
• Two-level scheduling

(Narasiman et al., MICRO’11)
splits active warps on each
SM into fetch groups (FGs)
• Prioritize issue from single

FG until stall
• Designed to balance pros

and cons of greedy vs. RR
scheduling

51

Warp Scheduling
• Two-level scheduling

(Narasiman et al., MICRO’11)
splits active warps on each
SM into fetch groups (FGs)
• Prioritize issue from single

FG until stall
• Designed to balance pros

and cons of greedy vs. RR
scheduling

51

Warp Scheduling
• Two-level scheduling

(Narasiman et al., MICRO’11)
splits active warps on each
SM into fetch groups (FGs)
• Prioritize issue from single

FG until stall
• Designed to balance pros

and cons of greedy vs. RR
scheduling

51

• Appears ineffective
for irregular codes

Conclusions

Recap
• First microarchitectural, cycle-level-simulation- 

based workload characterization focusing 
on irregular GPU kernels

• Findings
• Irregular codes have more load imbalance, branch divergence, and

uncoalesced memory accesses than regular codes
• For most applications, less branch divergence, atomics, and

synchronization penalty than expected
• Software designers successfully addressing these performance issues

53

[NVIDIA]

Key Takeaways for GPU Architects
• Improved memory and last-level cache latency and bandwidth, enhanced

cache effectiveness are the most important factors for supporting irregular
codes on GPUs
• Improving L2 latency/bandwidth appears more important than improving DRAM

latency/bandwidth
• Strategies to reduce coalescing pipeline penalty unlikely to help without corresponding

increases in memory bandwidth

• Simple warp schedulers (e.g., two-level active scheduling) that improve regular
codes are ineffective for irregular codes
• Greedy scheduling is the best simple strategy for these codes
• Addressing slowdown via warp scheduling likely to require more complex schedulers

54

Acknowledgements:
NSF Graduate Research Fellowship Program (grant 1144466)

NSF grants 1141022, 1217231, 1406304, and 1438963
Grants and gifts from NVIDIA Corporation

55

Questions?

THANK YOU!

IPC vs. Runtime

57

Input Sizes

58

Application Name Description Working Set L2 Size Multiplier
BFS, SSSP USA_road_d.NY NY roads (264K nodes, 734K edges) 3899 kB 5.08

USA_road_d.BAY SF Bay Area roads (321K nodes, 800K edges) 4380 kB 5.70

rmat200k-1600k R-MAT (200K nodes, 1600K edges) 7031 kB 9.16

rmat264k-734k R-MAT (264K nodes, 734K edges) 3898 kB 5.08

BH 494,000 1 (seed=7) 494K bodies, 1 timestep 7718 kB 10.05

494,000 1 (seed=1) 494K bodies, 1 timestep 7718 kB 10.05

DMR massive.2 100.3K triangles, maxfactor=10 7840 kB 10.21

30k 60K triangles, maxfactor=10 4688 kB 6.10

25k 50K triangles, maxfactor=10 3906 kB 5.09

MST USA_road_d.NY NY roads (264K nodes, 734K edges) 3898 kB 5.08

USA_road_d.BAY SF Bay Area roads (321K nodes, 800K edges) 4380 kB 5.70

rmat30k-250k R-MAT (30K nodes, 250K edges) 1093 kB 1.42

SP random-4200-1000-3-seed23.cnf 4.2K clauses, 1K literals, 3 literals/clause 414 kB 0.54

random-4200-1000-3-seed27.cnf 4.2K clauses, 1K literals, 3 literals/clause 414 kB 0.54

random-4200-1000-3-seed71.cnf 4.2K clauses, 1K literals, 3 literals/clause 414 kB 0.54

FPC obs_error 60 MB dataset, 30 blocks, 24 warps/block, dimensionality=24 60 MB 78.12

num_plasma 34 MB dataset, 30 blocks, 24 warps/block, dimensionality=2 34 MB 44.27

msg_lu X MB dataset, 30 blocks, 24 warps/block, dimensionality=5 186 MB 242.19

TSP att48.tsp 15,000 48 cities, 15K restarts 9 kB 0.01

eil51.tsp 15,000 51 cities, 15K restarts 10 kB 0.01

pr76.tsp 20,000 76 cities, 20K restarts 23 kB 0.03

NB 23,040 1 (seed=7) 23,040 bodies, 1 timestep 360 kB 0.47

23,040 1 (seed=19) 23,040 bodies, 1 timestep 360 kB 0.47

23,040 1 (seed=43) 23,040 bodies, 1 timestep 360 kB 0.47

MC (default) SDK input w/ 262,144 paths 1024 kB 1.33

Stall Cause Prioritization

59

Histogram: Deepest Pipeline Stage

60

Histogram: Most Impacted Warps

61

Input Variation: Similar Inputs

62

Input Variation: Road Networks vs. R-MAT

63

My GPGPU-Sim Toolkit
• Management of multiple runs with

different benchmarks, inputs, and
configs and feasible data analysis
required…
1. Regression infrastructure

supporting multiple cores, smart
directory and log file handling,
per-sim config specification

2. Log file parser to auto-
create .xlsx spreadsheets with
high-value data, pre-drawn
charts

64

• By default, GPGPU-Sim gives you ~3 GB of this (per run)
dumped to stdout:

Some Fun Numbers
• The results presented in the graphs and charts in this thesis

represent simulation times that on a single CPU would have
consumed approximately…

22,000+ hours
-or- 922+ days

-or- 30+ months!!!

65

