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Highlights
• GPUs are everywhere — and really good at 

accelerating certain types of codes (regular, 
vector-based) in energy/cost-efficient manner 
• But lots of emerging, important codes are irregular in nature 
• Nobody knows yet how to efficiently run these codes on accelerators 

• This thesis asks: What are the biggest hurdles to enabling GPUs 
to efficiently accelerate these codes? 
• Answer can help hardware designers broaden the acceleration 

capabilities of GPUs
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Background
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• GPUs as general-purpose accelerators 
• Ubiquitous in HPC/supercomputers 
• Spreading in PCs and mobile devices 
• Performance and energy-efficiency benefits…



Background

• …when code is well-suited! 
• Regular (input independent) vs. irregular (input determines control flow 

and memory accesses) 
• Lots of important irregular algorithms 

• Social networks, compilers, data mining, physics simulation, etc. 
• More difficult to parallelize, map less intuitively to GPUs
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Motivation
• GPUs likely to continue to grow in importance 

• Need to better understand irregular applications’ 
specific demands on GPU hardware 
• How they differ from those of regular codes 

• Identify most significant architectural limitations for irregular GPU 
kernels 
• To help software developers better optimize irregular codes 
• As a baseline for exploring hardware support for broader classes of 

general-purpose codes
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[NVIDIA]



Related Literature
• Simulator-based characterization studies 

• Bakhoda et al. (ISPASS’09), Goswami et al. (IISWC’10), Che et al. 
(IISWC’10), Blem et al. (EAMA’11), Lee and Wu (ISPASS’14) 
• CUDA SDK, Rodinia, Parboil (no focus on irregularity) 

• IISWC’14: O’Neil and Burtscher 1 [LonestarGPU]; Xu et al. [graph codes] 
• Emulator studies (also SDK, Rodinia, Parboil) 

• Kerr et al. (IISWC’09), Wu et al. (CACHES’11) 
• Hardware performance counters 

• Burtscher et al. (IISWC’12) [LonestarGPU], Che et al. (IISWC’13)
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[1] O’Neil and Burtscher, “Microarchitectural Performance Characterization of Irregular GPU Kernels,” IISWC 2014.
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CUDA GPUs
• Two-level compute hierarchy 

• Streaming multiprocessors (SMs) each 
composed of tightly-coupled processing 
elements (PEs) 

• CUDA program specifies the behavior of a kernel grid, the threads of 
which are grouped into thread blocks and dynamically assigned to SMs 
• Threads within a block share on-chip cache and fast synchronization 

• PEs execute warps (sets of 32 adjacent threads that execute as a 
vector instruction operating conditionally on 32 elements) 
• PEs fed with warps in multithreading style, interleaving between blocks
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[CUDA C Programming Guide, NVIDIA]



Branch Divergence
• To execute in parallel, threads in a warp must 

share identical control flow 
• If not, execution serialized by hardware into 

smaller groups of threads such that all threads 
in subset execute the same instruction 

• Good performance requires minimal branch divergence
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Irregular control flow makes divergence difficult to avoid!



Memory Coalescing
• For good performance, memory accesses within a warp must be 

coalesced (fall within the same cache line) 
• If a warp instruction touches multiple 128-byte segments, accesses to 

additional lines are serialized 
• Possible for single warp instruction to result in 32 separate transactions
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Memory Coalescing
• For good performance, memory accesses within a warp must be 

coalesced (fall within the same cache line) 
• If a warp instruction touches multiple 128-byte segments, accesses to 

additional lines are serialized 
• Possible for single warp instruction to result in 32 separate transactions
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[CUDA C Best Practice Guide, NVIDIA]

Irregular access patterns make coalescing difficult to achieve!



Cache & Memory Hierarchy
• All SMs share global memory (DRAM) as well 

as a unified L2 cache (GTX 480: 768 kB) 

• Each SM has a programmer-controlled 
shared memory (16 kB - 48 kB) 

• Shared between blocks resident on SM 

• Each Fermi SM has incoherent L1 data 
cache (16 kB - 48 kB)
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[Fermi Whitepaper, NVIDIA, 2009]



Methodology

[GT200, PCPerspective.com]



Problem Statement
• For a set of irregular and regular applications, understand the impact of 

control-flow and memory-access irregularity on… 
• Branch divergence 
• Memory coalescing 
• Cache effectiveness
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Problem Statement
• For a set of irregular and regular applications, understand the impact of 

control-flow and memory-access irregularity on… 
• Branch divergence 
• Memory coalescing 
• Cache effectiveness
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• Assess the sensitivity of these applications to hardware design 
parameters such as… 
• Cache and memory latency 
• Cache and memory bandwidth 
• Cache size 
• Coalescing behavior 
• Warp scheduling policy

Code behavior

Hardware performance

Hardware parameters 
critical to the 

performance factors 
above



Objective
• My goal: From patterns of behavior in studied benchmarks, abstract  

an understanding of the impact of irregular code (data structures, 
algorithms, implementation choices) on hardware performance 

• NOT my goal: Determine the best particular configuration of hardware 
parameters for this particular set of codes and GPU device 
• Why not? 

• No claim of completeness in benchmark suite 
• GPU microarchitecture (and macro-architecture!) still in flux 

• I want to identify the major bottlenecks in hardware where architects should 
be focusing their attention 
• Versus the sources of performance loss that programmers can address on their own
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GPGPU-Sim
• Cycle-level microarchitectural simulator of a CUDA GPU 

• Functional PTX simulator (NVIDIA’s virtual ISA) 
• Timing model for the SMs, caches, 

shared memory, interconnect network, 
memory partitions (including L2 cache), 
and off-chip DRAM 

• GPGPU-Sim v. 3.2.1 
• GTX 480 (Fermi) configuration 
• Plus bug fixes, additional operations, extra performance counters, and new 

hardware configuration options
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[Aamodt and Fung, GPGPU-Sim v3.x Manual]
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Irregular Applications (LonestarGPU)
• Breadth-First Search (BFS) 

• Labels each node in graph with 
minimum level from start node 

• BFS: Topology-driven 
• BFS-unroll: Multiple frontiers per 

iteration w/ local worklist 
• BFS-wlw: Data-driven, node per 

thread 
• BFS-wlc: Data-driven, edge per 

thread (Merrill et al., PPoPP’12)
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• Barnes-Hut (BH) 
• Approximate N-body algorithm 

using octree to decompose 
space around bodies 

• Mesh Refinement (DMR) 
• Iteratively transforms ‘bad’ 

triangles by retriangulating 
surrounding cavity

[LonestarGPU]



Irregular Applications (LonestarGPU)
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• Minimum Spanning Tree 
(MST) 
• Applying Boruvka’s algorithm, 

successively contracts minimum 
weight edge until single node 

• Survey Propagation (SP) 
• Heuristic SAT-solver based on 

Bayesian inference, represents 
Boolean formula as bipartite 
graph of variables and clauses

• Single-Source 
Shortest Paths (SSSP) 
• Labels each node in graph with 

minimum level from start node 
• SSSP: Topology-driven 
• SSSP-wln: Data-driven, node 

per thread 
• SSSP-wlc: Data-driven, edge 

per thread

[StackExchange.com]



Semi-Regular Applications
• FP Compression (FPC) 1 

• Lossless data compression for 
DP floating-point values 

• Irregular control flow
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• Traveling Salesman (TSP) 2,3 
• Find minimal tour in graph using 

iterative hill climbing 
• Irregular memory accesses

[1] O’Neil and Burtscher, “Floating-Point Data Compression at 75 Gb/s on a GPU,” GPGPU 2011.
[2] O’Neil, Tamir, and Burtscher, “A Parallel GPU Version of the Traveling Salesman Problem,” PDPTA 2011.
[3] O’Neil and Burtscher, “Rethinking the Parallelization of Random-Restart Hill Climbing,” GPGPU 2015.

[AnalyticBridge.com]
[Applegate et al.]



Regular Applications
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• Monte Carlo (MC) 
• Evaluates fair call price for set of 

options using Monte Carlo 
method 

• CUDA SDK version

• N-Body (NB) 
• N-body algorithm using all-to-all 

force calculation 
• Texas State ECL version 

(outperforms SDK version)



Regular Applications

19

• Monte Carlo (MC) 
• Evaluates fair call price for set of 

options using Monte Carlo 
method 

• CUDA SDK version

• N-Body (NB) 
• N-body algorithm using all-to-all 

force calculation 
• Texas State ECL version 

(outperforms SDK version)

• Input for each benchmark: 
• Small enough to result in reasonable simulation runtimes (<2 weeks) but large 

enough to keep simulated hardware busy 
• Where possible, working set ≥ 5 times the default L2 cache size



Results & Analysis



Application Performance
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Peak: 480 IPC

Peak  
IPC



Application Performance

• Strong correlation between 
regularity of code and IPC 

• BH is an exception 
(runtime-dominating kernel has been regularized) 

• No simple or fixed rule to delineate the performance of irregular 
and regular codes
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Sources of 
Performance Limitation

Divergence + Un-C
oalesing 

are not factors we have to 

consider when writing 

parallel CPU code!



Branch Divergence
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• BH an outlier again
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Memory Coalescing
• Regular applications are fully 

coalesced 
• TSP: byte-granular stores to same 

word serialized by hardware 
• BH tree construction, SP, and SSSP-

wln all very un-coalesced 
• Very scattered access patterns 
• Topological BFS + SSSP quite 

coalesced, but…
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Memory Coalescing
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• High load instruction count → even a 
small amount of un-coalescing hurts

• Regular applications are fully 
coalesced 

• TSP: byte-granular stores to same 
word serialized by hardware 

• BH tree construction, SP, and SSSP-
wln all very un-coalesced 
• Very scattered access patterns 
• Topological BFS + SSSP quite 

coalesced, but…



Memory Coalescing
• Two components to coalescing 

1. Pipe stall or replay necessary to perform cache lookup, set up 
memory request, etc. 

2. Extra memory traffic 

• New GPGPU-Sim configuration: No Coalesce Penalty (NCP) 
• Artificially removes the pipeline stall for non-coalesced accesses 
• No other improvement to memory pipeline to handle additional traffic 
• Not intended to be a realistic hardware improvement

32

[CUDA C Best Practice Guide, NVIDIA]



Memory Coalescing
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Memory Coalescing
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• Applied NCP config by itself as well as in combination with increased cache buffers 
• Removing pipeline penalty alone does little good (and sometimes hurts) 

• Improving miss-handling capacity in the cache doesn’t help much, either! 

• H/W improvements aimed at reducing coalescing pipeline penalty unlikely to help 
irregular codes unless combined with improved memory bandwidth or cache usage
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• Applied NCP config by itself as well as in combination with increased cache buffers 
• Removing pipeline penalty alone does little good (and sometimes hurts) 

• Improving miss-handling capacity in the cache doesn’t help much, either! 

• H/W improvements aimed at reducing coalescing pipeline penalty unlikely to help 
irregular codes unless combined with improved memory bandwidth or cache usage

 Byte-granular  
stores
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• Irregular codes look very 
different than regular codes 
• Lots of pointer chasing 
• Not much spatial locality 

• SP has highest average 
access count of these codes 
 → absurdly high miss rate

Cache Effectiveness

35

• Very high miss ratios (most 
>50% in the L1) 

• GPUs and CPUs have caches 
for different reasons

SP=939
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Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each 
benchmark 
• In issue stage of each SM 
• Based on active threads in warp 
• If no issue: track deepest pipeline 

stage responsible for no-issue
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Measuring Application Slowdown

• Histogram of underutilized vs.  
fully-occupied cycles in each 
benchmark 
• In issue stage of each SM 
• Based on active threads in warp 
• If no issue: track deepest pipeline 

stage responsible for no-issue
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Busy

Interblock Imbalance
Divergence

Pipeline Stall: Non-LSU

Pipeline Stall: LSU

Scoreboard Hazard

Control Hazard
Atomic

Memory Barrier

Synchronization Barrier
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Data-driven codes have high 
synchronization penalty

Additional atomic 
operations add mostly 

RAW hazard stalls

Large memory 
access penalty 

in nearly all of the 
irregular apps
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Barnes-Hut looks 
quite regular…

…but not all of its 
kernels do

In general, less 
divergence penalty 

than expected

Synchronization/atomics 
penalty also somewhat below 

expectation

Source code optimizations 
already addressing these 

bottlenecks more effectively than 
memory-related slowdown



Applications

40



ApplicationsApplications: (Semi-)Regular

40



ApplicationsApplications: (Semi-)Regular

40

Regular codes have 
mostly fully-occupied 

cycles



ApplicationsApplications: (Semi-)Regular

40

Regular codes have 
mostly fully-occupied 

cycles

Computation pipeline 
hazards (rather than LS)
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Latency Scaling
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Latency Scaling
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• Regular codes largely insensitive to latency 

• FPC: quite sensitive to L2 latency (streaming code, high spatial locality) 

• Overall, L2 latency appears more important than DRAM latency 
• Even for inputs with working set sizes several times larger than the L2



Bandwidth Scaling
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Bandwidth Scaling

45

• Similarly to latency results, most applications are much more sensitive to L2 
bandwidth than to DRAM bandwidth 
• Regular/vector codes largely unaffected by bandwidth scaling 

• For tested inputs, the L2 is large enough that sufficient L2 bandwidth keeps 
enough warps able to execute



Cache Size Scaling
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Cache Size Scaling
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• Codes sensitive to L2 bandwidth are also sensitive to L1D size 

• Most irregular codes hurt more by a smaller L1 than a smaller L2 
• Regular codes are the opposite, but the effect is much less pronounced



Warp Scheduling
• GPUs cannot hide latency without 

multiple warps from which to issue on  
every SM 
• Multithread instructions from inflight warps 
• If a warp encounters a long operation 

(e.g., RAW hazard on load data or stall), SM can issue from another 
warp instead 

• If no other warp can issue its next instruction → underutilization

48

[Fermi Whitepaper, NVIDIA, 2009]



Warp Scheduling
• Selection policy to choose next warp to issue can significantly 

impact GPU’s ability to hide latencies 
• Round Robin (RR) 
• Greedy-Then-Oldest (GTO) 
• Two-Level Active Scheduler 

• Round-robin schedulers: Good for preserving inter-warp locality,  
but warps tend to arrive at long-latency operations in close time 
proximity 

• Greedy schedulers: Lose memory access locality as warps run 
progressively out-of-sync, but mitigate the all-stall-together issue

49

 GPGPU-Sim  
default
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Warp Scheduling
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• GTO scheduling superior for irregular codes, which often 
possess little inter-warp locality

RR improves  
all the regular 
& semi-regular 

codes



Warp Scheduling
• Two-level scheduling 

(Narasiman et al., MICRO’11) 
splits active warps on each 
SM into fetch groups (FGs) 
• Prioritize issue from single 

FG until stall 
• Designed to balance pros 

and cons of greedy vs. RR 
scheduling
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Warp Scheduling
• Two-level scheduling 

(Narasiman et al., MICRO’11) 
splits active warps on each 
SM into fetch groups (FGs) 
• Prioritize issue from single 

FG until stall 
• Designed to balance pros 

and cons of greedy vs. RR 
scheduling

51

• Appears ineffective 
for irregular codes



Conclusions



Recap
• First microarchitectural, cycle-level-simulation- 

based workload characterization focusing 
on irregular GPU kernels 

• Findings 
• Irregular codes have more load imbalance, branch divergence, and 

uncoalesced memory accesses than regular codes 
• For most applications, less branch divergence, atomics, and 

synchronization penalty than expected 
• Software designers successfully addressing these performance issues

53

[NVIDIA]



Key Takeaways for GPU Architects
• Improved memory and last-level cache latency and bandwidth, enhanced 

cache effectiveness are the most important factors for supporting irregular 
codes on GPUs 
• Improving L2 latency/bandwidth appears more important than improving DRAM 

latency/bandwidth 
• Strategies to reduce coalescing pipeline penalty unlikely to help without corresponding 

increases in memory bandwidth 

• Simple warp schedulers (e.g., two-level active scheduling) that improve regular 
codes are ineffective for irregular codes 
• Greedy scheduling is the best simple strategy for these codes 
• Addressing slowdown via warp scheduling likely to require more complex schedulers
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Questions?

THANK YOU!





IPC vs. Runtime
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Input Sizes
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Application Name Description Working Set L2 Size Multiplier
BFS, SSSP USA_road_d.NY NY roads (264K nodes, 734K edges) 3899 kB 5.08

USA_road_d.BAY SF Bay Area roads (321K nodes, 800K edges) 4380 kB 5.70

rmat200k-1600k R-MAT (200K nodes, 1600K edges) 7031 kB 9.16

rmat264k-734k R-MAT (264K nodes, 734K edges) 3898 kB 5.08

BH 494,000 1 (seed=7) 494K bodies, 1 timestep 7718 kB 10.05

494,000 1 (seed=1) 494K bodies, 1 timestep 7718 kB 10.05

DMR massive.2 100.3K triangles, maxfactor=10 7840 kB 10.21

30k 60K triangles, maxfactor=10 4688 kB 6.10

25k 50K triangles, maxfactor=10 3906 kB 5.09

MST USA_road_d.NY NY roads (264K nodes, 734K edges) 3898 kB 5.08

USA_road_d.BAY SF Bay Area roads (321K nodes, 800K edges) 4380 kB 5.70

rmat30k-250k R-MAT (30K nodes, 250K edges) 1093 kB 1.42

SP random-4200-1000-3-seed23.cnf 4.2K clauses, 1K literals, 3 literals/clause 414 kB 0.54

random-4200-1000-3-seed27.cnf 4.2K clauses, 1K literals, 3 literals/clause 414 kB 0.54

random-4200-1000-3-seed71.cnf 4.2K clauses, 1K literals, 3 literals/clause 414 kB 0.54

FPC obs_error 60 MB dataset, 30 blocks, 24 warps/block, dimensionality=24 60 MB 78.12

num_plasma 34 MB dataset, 30 blocks, 24 warps/block, dimensionality=2 34 MB 44.27

msg_lu X MB dataset, 30 blocks, 24 warps/block, dimensionality=5 186 MB 242.19

TSP att48.tsp 15,000 48 cities, 15K restarts 9 kB 0.01

eil51.tsp 15,000 51 cities, 15K restarts 10 kB 0.01

pr76.tsp 20,000 76 cities, 20K restarts 23 kB 0.03

NB 23,040 1 (seed=7) 23,040 bodies, 1 timestep 360 kB 0.47

23,040 1 (seed=19) 23,040 bodies, 1 timestep 360 kB 0.47

23,040 1 (seed=43) 23,040 bodies, 1 timestep 360 kB 0.47

MC (default) SDK input w/ 262,144 paths 1024 kB 1.33



Stall Cause Prioritization
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Histogram: Deepest Pipeline Stage
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Histogram: Most Impacted Warps
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Input Variation: Similar Inputs
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Input Variation: Road Networks vs. R-MAT
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My GPGPU-Sim Toolkit
• Management of multiple runs with 

different benchmarks, inputs, and 
configs and feasible data analysis 
required… 
1. Regression infrastructure 

supporting multiple cores, smart 
directory and log file handling, 
per-sim config specification 

2. Log file parser to auto-
create .xlsx spreadsheets with 
high-value data, pre-drawn 
charts

64

• By default, GPGPU-Sim gives you ~3 GB of this (per run) 
dumped to stdout:



Some Fun Numbers
• The results presented in the graphs and charts in this thesis 

represent simulation times that on a single CPU would have 
consumed approximately… 

22,000+ hours 
-or-  922+ days 

-or-  30+ months!!!
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