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Highlights

 GPUs are everywhere — and really good at
accelerating certain types of codes (regular,
vector-based) in energy/cost-efficient manner

* But lots of emerging, important codes are irreqular in nature

 Nobody knows yet how to efficiently run these codes on accelerators

* This thesis asks: What are the biggest hurdles to enabling GFPUSs
to efficiently accelerate these codes?

* Answer can help hardware designers broaden the acceleration
capabillities of GPUs




Background

* GPUs as general-purpose accelerators
o Ubiquitous iIn HPC/supercomputers

e Spreading in PCs and mobile devices
* Performance and energy-efficiency benefits...




Background

* GPUs as general-purpose accelerators
o Ubiquitous iIn HPC/supercomputers

e Spreading in PCs and mobile devices
* Performance and energy-efficiency benefits...

e ...when code is well-suited!

o Reqular (input independent) vs. irreqular (input determines control flow
and Memory accesses)

* |ots of important irregular algorithms
* Social networks, compilers, data mining, physics simulation, etc.
* More difficult to parallelize, map less intuitively to GPUs
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Motivation

* GPUs likely to continue to grow in importance

* Need to better understand irregular applications’
specific demands on GPU hardware

 How they differ from those of regular codes

 |dentify most significant architectural limitations for irregular GPU
kernels

* [0 help software developers better optimize irrequiar coaes

* As a baseline for exploring hardware support tor broader classes of
general-purpose codes




Related Literature

e Simulator-based characterization studies

 Bakhoda et al. (ISPASS’09), Goswami et al. (ISWC’10), Che et al.
(IISWC’10), Blem et al. (EAMA’11), Lee and Wu (ISPASS’14)

 CUDA SDK, Rodinia, Parboil (no focus on irregularity)
o [ISWC’14: O’Neil and Burtscher ' [LonestarGPU]; Xu et al. [graph codes]

* Emulator studies (also SDK, Rodinia, Parboil)
* Kerr et al. (IISWC’09), Wu et al. (CACHES’11)

* Hardware performance counters
* Burtscher et al. (ISWC’12) [LonestarGPU]|, Che et al. (ISWC'13)

[1] O’Neil and Burtscher, “Microarchitectural Performance Characterization of Irregular GPU Kernels,” ISWC 2014.
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* [wo-level compute hierarchy

e Streaming multiprocessors (SMs) each
composed of tightly-coupled processing
elements (PEs)

* CUDA program specifies the behavior of a kernel grid, the threads of
which are grouped into thread blocks and dynamically assigned to SMs

* [hreads within a block share on-chip cache and fast synchronization

* PEs execute warps (sets of 32 adjacent threads that execute as a
vector instruction operating conditionally on 32 elements)

* PEs fed with warps in multithreading style, interleaving between blocks
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Branch Divergence
I S eevvee

e Jo execute in parallel, threads in a warp must Condtir %%%%%%%%%%
share igentical control flow T

* |f not, execution serialized by hardware into

ler groups of threads such that all threads % % % % %
S i

IN subset execute the same instruction

* (Good performance requires minimal branch divergence




Branch Divergence
I S eevvee

* [o execute in parallel, threads in a warp must Copton
share identical control flow %%%%%%%%%
* |f not, execution serialized by hardware into
| f thread h that all thread
ﬁwmsi k?sr e% rce)igcf uct)e threeasafnseui(;] struitign . ] %3%%%%%

* (Good performance requires minimal branch divergence

Irreqular control flow malkes diverqgence ditficult to avoid!
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Memory Coalescing

* For good performance, memory accesses within a warp must be
coalesced (fall within the same cache line)

e |f a warp instruction touches multiple 128-byte segments, accesses to
additional lines are serialized

* Possible for single warp instruction to result in 32 separate transactions

addresses from a warp y _
adaresses from a warp

I e [ S

0 32 64 96 128 160 192 224 256 288 320 352 1384 0 32 64 96 128 160 192 224 256 288 320 352 1384




Memory Coalescing

* For good performance, memory accesses within a warp must be
coalesced (fall within the same cache line)

e |f a warp instruction touches multiple 128-byte segments, accesses to
additional lines are serialized

* Possible for single warp instruction to result in 32 separate transactions

addresses from a warp
addresses from a warp

I e [ S

0 32 64 96 128 160 192 224 256 288 320 352 1384 0 32 64 96 128 160 192 224 256 288 320 352 1384

Irregular access patterns make coalescing difficult to achieve!




Gache & Memory Hierarchy

* All SMs share global memory (DRAM) as well
as a unifled L2 cache (GTX 480: 768 kB ‘ \

* Each SM has a programmer-controlled !
shared memaory (16 kB - 48 kB)

e Shared between blocks resident on SM

e Fach Fermi SM has incoherent L1 data
cache (16 kB - 48 kB)




Methodology
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Problem Statement
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Problem Statement

* [For a set of irregular and regular applications, understand the impact of
control-flow and memory-access irregul arlty on..
» Branch divergence A
* Memory coalescing ¥
e (Cache effectiveness

* Assess the sensitivity of these applications to hardware design
parameters such as...
e Cache and memory latency

T~ Code behavior

™~ Hardware performance

Hardware parame&ers

 (Cache and memory bandwidth cribical Fo bhe
 (Cache size performance factors
e (Coalescing behavior above

* Warp scheduling policy




Objective

My goal: From patterns of behavior in studied benchmarks, abstract
an understanding of the impact of irreqular code (data structures, v
algorithms, implementation choices) on hardware performance . l

e NOT my goal: Determine the best particular configuration of hardware
parameters for this particular set of codes and GPU device
e \Why not”/
e No claim of completeness in benchmark suite
e GPU microarchitecture (and macro-architecture!) still in flux

e | want to identify the major bottlenecks in hardware where architects should
be focusing their attention
* \ersus the sources of performance loss that programmers can address on their own




GPGPU-Sim

* Cycle-level microarchitectural simulator of a CUDA GPU
* Functional PTX simulator (NVIDIA's virtual ISA)
* Timing model for the SMs, caches,

. | PC, _Stack Bank Shared| [MSHR
shared memory, interconnect network, e B ——
" . . B s ask[1;W]:. A -bCoc:I‘:Zi.»Ca?:t:e g
memory partitions (including L2 cache), D28 § s )
| ValﬁnzN] = » €xture §
and off-chip DRAM ==
' 4 Bran;r\fﬁa[get PC oo -~ . /
Fetch [ ~—1 SIMT-Stack B3
X vaidiN_ T.Bor Active RS LL,
. I-Cathe | Decode 7 #u - > Issr:Sk_,r;Pefa"d ¢ 4 =
) Coll
¢ GPGPU‘S”“ V. 3.2.1 [ geore 1 TN e |
Done (WID)

e GTX 480 (Fermi) configuration

* Plus bug fixes, additional operations, extra performance counters, and new
hardware configuration options




Applications




Irregular Applications (LonestarGPU)

* Breadth-First Search (BFS)

* [abels each node In graph with
minimum level from start node ~ © Barnes-Hut (BH)
* BFS: Topology-driven * Approximate N-body algorithm
e BFS-unroll: Multiple frontiers per using octree to decompose
teration w/ local worklist Space around bodies

* BFS-wiw: Data-driven, node per ¢ Mesh Refinement (DMR)

threao e [teratively transforms ‘bad’
* BFS-wic: Data-driven, edge per triangles by retriangulating
thread (Merrill et al., PPoPP’12) surrounding cavity




Irregular Applications (LonestarGPU)

* Minimum Spanning Tree

(MST) * Single-Source

» Applying Boruvka'’s algorithm, Shortest Paths (SSSP)
successively contracts minimum e Labels each node in graph with
weight edge until single node minimum level from start node

. Survey Propagation (SP) o SSSP: Topology-driven

» Heuristic SAT-solver based on * 555P-win: Data-driven, node
Bayesian inference, represents per thread
Boolean formula as bipartite * SSSP-wic: Data-driven, edge

graph of variables and clauses per thread




Semi-Regular Applications

 FP Compression (FPC)' * Traveling Salesman (TSP) 23
* [ ossless data compression for * Find minimal tour In graph using
DP floating-point values terative hill climbing
* |rregular control flow * |rregular memory accesses

1] O’Neil and Burtscher, “Floating-Point Data Compression at 75 Gb/s on a GPU,” GPGPU 2011.

| I, Tamir, and Burtscher, “A Parallel GPU Version of the Traveling Salesman Problem,” PDPTA 2011.
3] O’Neil and Burtscher, “Rethinking the Parallelization of Random-Restart Hill Climbing,” GPGPU 2015.

N
Q
Z
@

18




Regular Applications

* Monte Carlo (MC) * N-Body (NB)
* Evaluates fair call price for set of * N-body algorithm using all-to-all
options using Monte Carlo force calculation
method » Texas State ECL version

 CUDA SDK version (outperforms SDK version)




Regular Applications

* Monte Carlo (MC) * N-Body (NB)
* Evaluates fair call price for set of * N-body algorithm using all-to-all
options using Monte Carlo force calculation
method » Texas State ECL version
 CUDA SDK version (outperforms SDK version)

* |nput for each benchmark:
* Small enough to result in reasonable simulation runtimes (<2 weeks) but large
enough to keep simulated hardware busy

* Where possible, working set = 5 times the default L2 cache size
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Results & Analysis




Instructions per cycle (IPC)
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Application Performance
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o Strong correlation between
regularity of code and |IPC
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» BH is an exception o
(runtime-dominating kernel has been regularized)

* No simple or fixed rule to delineate the performance of irregular
and regular codes
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Sources of
Performance Limitation

Diverqgence + Un-Coalesing
are not factors we have to
consider when writing
tmrad.tet CPU code!




Branch Divergence
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Branch Divergence

* |rregular codes more ]
diverged |
e But only two <~50% F
occupled
 BH an outlier again R

Average warp occupancy
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Average warp occupancy
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Memory Coalescing
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Memory Coalescing

* Regular applications are fully
coalesced

14

12

* [SP: byte-granular stores to same
word serialized by hardware
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Memory Coalescing

% coalescing stalls
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Memory Coalescing

» Regular applications are fully o
coalesced  :

» TSP: byte-granular stores to same  § . i
word serialized by hardware 2 )
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Memory Coalescing

* Regular applications are fully
coalesced

12 —+

Average access count

* [SP: byte-granular stores to same
word serialized by hardware

 BH tree construction, SP, and SSSP-
win all very un-coalesced
* \ery scattered access patterns

* Jopological BFS + SSSP quite
coalesced, but...
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% coalescing stalls

* High load instruction count = even a
small amount of un-coalescing hurts




Memory Coalescing

0 32 64 96 128 160 192 224 256 288 320 352 384

* [wo components to coalescing

1. Plipe stall or replay necessary to perform cache lookup, set up
mMemaory request, etc.

2. Extra memory traffic

 New GPGPU-SIm configuration: No Coalesce Penalty (NCP)
* Artificially removes the pipeline stall for non-coalesced accesses
 No other improvement to memory pipeline to handle additional traffic
* Not intended to be a realistic hardware improvement




Memory Coalescing
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Memory Coalescing

* Applied NCP config by itself as well as in combination with increased cache buffers

 Removing pipeline penalty alone does little good (and sometimes hurts)
* |mproving miss-handling capacity in the cache doesn’t help much, either!

o H/W improvements aimed at reducing coalescing pipeline penalty unlikely to help
irregular codes unless combined with improved memory bandwidth or cache usage
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Memory Coalescing

* Applied NCP config by itself as well as in combination with increased cache buffers

 Removing pipeline penalty alone does little good (and sometimes hurts)
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Cache Effectiveness

100% -
90% -
80% -

* \ery high miss ratios (most
>50% In the L1)

70% -
60% -
50% -

Cache miss ratio

40% -

e GPUs and CPUs have caches
for different reasons

30% -
20% -
10% -

0%




Cache Effectiveness
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Cache Effectiveness
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* |rregular codes look very
different than regular codes

* |ots of pointer chasing

N
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200 -
 Not much spatial locality

150 -

100 -

* SP has highest average
access count of these codes
— absurdly high miss rate
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Cache misses per 1000 warp instructions (MPKI)
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Individual Applications




Measuring Application Slowdown

* Histogram of unaerutilized vs.

fully-occupied cycles In each
benchmark

* |nissue stage of each SM
 Based on active threads in warp

* |f no Issue: track deepest pipeline
stage responsible for no-issue
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Measuring Application Slowdown
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Applications: BFS & SSSP
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Applications: BFS & SSSP
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Hardware Modifications




Latency Scaling
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Latency Scaling

* Reqgular codes largely insensitive to latency

 FPC: quite sensitive to L2 latency (streaming code, high spatial locality)

e Qverall, L2 latency appears more important than DRAM latency
* Even for inputs with working set sizes several times larger than the L2
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Bandwidth Scaling
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Bandwidth Scaling

o Similarly to latency results, most applications are much more sensitive to L2
banadwidth than to DRAM bandwidth

* Regular/vector codes largely unaffected by bandwidth scaling

* For tested inputs, the L2 is large enough that sufficient L2 bandwidth keeps
enough warps able to execute

1.5

1.4
13 | | ‘
| lBFS BFS-wlw BFS-wlc [ [ | | |SSSP 'SP win I;P wlc  FPC TSP NB MC

W 1/2x L2+DRAM Bandwidth ¥ 1/2x L2 Bandwidth ~ 1/2x DRAM Bandwidth ~ 2x DRAM Bandwidth ™ 2x L2 Bandwidth ™ 2x L2+DRAM Bandwidth

Speedup (IPC)
o o o = =
~ o0 ©0 = = N

o
o

45




Gache Size Scaling
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Gache Size Scaling

e Codes sensitive to L2 bandwidth are also sensitive to L1D size

* Most irregular codes hurt more by a smaller LT than a smaller L2
* Regular codes are the opposite, but the effect Is much less pronouncead
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Warp Scheduling

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit Instruction Dispatch Unit

* GPUs cannot hide latency without
multiple warps from which to issue on
every SM

time

* Multithread instructions from inflight warps

* |f a warp encounters a long operation
(e.g., RAW hazard on load data or stall), SM can issue from another
warp instead

* |f no other warp can issue its next instruction = underutilization




Warp Scheduling

* Selection policy to choose next warp to issue can significantly
mpact GPU’s ability to hide latencies
* Round Robin (RR) GPGPU-Sim
+ Greedy-Then-Oldest (GTO) 4~ defout
o Jwo-Level Active Scheduler

* Round-robin schedulers: Good for preserving inter-warp locality,
but warps tend to arrive at long-latency operations in close time
oroximity

* Greedy schedulers: Lose memory access locality as warps run
progressively out-of-sync, but mitigate the all-stall-together issue
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Warp Scheduling

Round Robin [RR]
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Warp Scheduling

RR improves
all the reqular
& semi-reqular

codes

Round Robin [RR]

Speedup (IPC)




Warp Scheduling

KK tmproves
., all the reqular
& semi-reqular
codes

Round Robin [RR]
1.2

Speedup (IPC)

o (370 scheduling superior for irreqular codes, which often
possess little inter-warp locality




Warp Scheduling

* Two-level scheduling
(Narasiman et al., MICRO’11)
splits active warps on each
SM into fetch groups (FGSs)

* Prioritize issue from single
-G until stal

* Designed to balance pros
and cons of greedy vs. RR
scheduling
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Recap

* Frst microarchitectural, cycle-level-simulation-
based workload characterization focusing L
on irregular GPU kernels

* FIndings

* |rregular codes have more load imbalance, branch divergence, and
uncoalesced memory accesses than regular codes

* For most applications, less branch divergence, atomics, and
synchronization penalty than expected

* Software designers successfully addressing these performance issues




hey Takeaways for GPU Architects

 Improved memory and last-level cache latency and bandwidth, enhanced
cache effectiveness are the most important factors for supporting irregular
codes on GPUs

* Improving L2 latency/bandwidth appears more important than improving DRAM
atency/bandwidth

o Strategies to reduce coalescing pipeline penalty unlikely to help without corresponding
INncreases in memory bandwidth

e Simple warp schedulers (e.q., two-level active scheduling) that improve regular
codes are ineffective for irregular codes

* (Greedy scheduling is the best simple strategy for these codes

* Addressing slowdown via warp scheduling likely to require more complex schedulers
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PC vs. Runtime
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Input Sizes

Application

Name
USA road d.NY

USA road d.BAY
rmat200k-1600k
rmat264k-734k
494,000 1 (seed=7)
494,000 1 (seed=1)
massive.2
30k
25k
USA road d.NY
USA road d.BAY
rmat30k-250k
random-4200-1000-3-seed23.cnf
random-4200-1000-3-seed27.cnf
random-4200-1000-3-seed71.cnf
obs_error
num_plasma
msg_lu
att48.tsp 15,000
eil51.tsp 15,000
pr76.tsp 20,000
23,040 1 (seed=7)

23,040 1 (seed=19)
23,040 1 (seed=43)
(default)

Description
NY roads (264K nodes, 734K edges)

SF Bay Area roads (321K nodes, 800K edges)
R-MAT (200K nodes, 1600K edges)
R-MAT (264K nodes, 734K edges)
494K bodies, 1 timestep
494K bodies, 1 timestep
100.3K triangles, maxfactor=10
60K triangles, maxfactor=10
50K triangles, maxfactor=10
NY roads (264K nodes, 734K edges)
SF Bay Area roads (321K nodes, 800K edges)
R-MAT (30K nodes, 250K edges)
4.2K clauses, 1K literals, 3 literals/clause
4.2K clauses, 1K literals, 3 literals/clause
4.2K clauses, 1K literals, 3 literals/clause
60 MB dataset, 30 blocks, 24 warps/block, dimensionality=24
34 MB dataset, 30 blocks, 24 warps/block, dimensionality=2
X MB dataset, 30 blocks, 24 warps/block, dimensionality=>5
48 cities, 15K restarts
51 cities, 15K restarts
76 cities, 20K restarts
23,040 bodies, 1 timestep
23,040 bodies, 1 timestep
23,040 bodies, 1 timestep
SDK input w/ 262,144 paths

Working Set

3899 kB
4380 kB
7031 kB
3898 kB
7718 kB
7718 kB
7840 kB
4688 kB
3906 kB
3898 kB
4380 kB
1093 kB
414 kB
414 kB
414 kB
60 MB
34 MB
186 MB
9 kB
10 kB
23 kB
360 kB
360 kB
360 kB
1024 kB

L2 Size Multiplier

5.08
5.70
9.16
5.08
10.05
10.05
10.21
6.10
5.09
5.08
5.70
1.42
0.54
0.54
0.54
78.12
44.277

242.19

0.01
0.01
0.03
0.47
0.47
0.47
1.33




Stall C

ause Prioritization
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Histogram: Deepest Pipeline Stage
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Histogram: Most Impacted Warps
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Input Variation: Road Networks vs. R-MAI
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My GPGPU-Sim Toolkit

e By default, GPGPU-SIm gives you ~3 GB of this (per run) - :
durnped to stdout:  Management of multiple runs with

_ JON \ sssp-wic_USA-road-d.NY.gr_Default.PreferS...ome/molly/thesis_sims_xmasbreak/logs) - GVIM d iﬁe re nt b e n C h m a r kS y i n p u t S y a n d

File Edit Tools Syntax Buffers Window Help

SAD& se KB A2eaad nia B0 configs and feasible data analysis

spgpu_stall _shd mem[s mem][bk conf] = 128

gpgpu stall shd mem[gl mem)|[bk conf] = 0

gpgpu_stall_shd _mem[gl memjﬁgual_stall] 57776 .

gpgpu_stall_shd_mem[g_mem_ld] [coal_stall re u I re

gpgpu_stall_shd_mem[g_mem_1ld][mshr ¢ .
. _

gpgpu_stall_shd _mem[« n—l_ld][w 1t_

g_
g_
gpgpu_stall shd mem[g mem ld][wb icnt rc]

gpgpu_stall_shd_mem[g_mem_ld][wb_rsrv_fail] = G ' '
gpgpu_stall_shd_mem[g_mem_st][coal_stall] 57560 -1 Re reSSIOn I nfraStru Ctu re
gpgpu stall shd mem{g mem st][mshr rc] =0 n
gpgpu_stall_shd_mem[g_mem_st][icnt_rc] = 0
gpgpn_stal‘_ hd _mem [j_m T_st][wh_lcnt_rc

(g

§ ] [
ST supporting multiple cores, smart
|:_”:u_1;:|1_sta;1'._ h(i _mem 1 _mem 1(1][((1‘11 ,t:«xH = Q upp y
gpgpu_stall shd mem[1l mem 1d][ms} 1r”r::] =0
gpgpu_stall_shd_mem L _mem_ld][1cnt_rc] =0

|
| . . .
'ZH'-”]FIH_%t:{l_’_ hd rr~r1[1 mem hi][ tn 1'.'nt_|'n'] = (
S L e directory and log file hanaling
g;:u._u;u_stdl’_ hri n~|1[1 mem S ][(r.dl ,1111] = @ y
gpgpu_stall shd mem[Ll mem ﬁ‘][quf rc] 0 . . o .
gpgpu_stall_shd_mem[Ll_mem_st][1cnt_rc] ¢)

gpgpu_stall shd mem[l mem st][wb icnt rc] = 0 per_SIm Conflg SpeCIflcatIOﬂ

gpgpu stall shd mem[L mem st][wb rsrv fail] 0

gpu_reqg_bank_co nl--t_ftalls = 0

Pipe Stall Distribution

LSU: 620207 SP:23060 SFU:9846

2. Log file parser to auto-
WO Id SyncBar: 14437 WO Idle MemBar:0 WO Idle Atomic:241 WO Idle CtrlHaz:135 WO Idle Nolnst: 1094189 "

oY wo

WO_Scb_RAW: 25703 WO_Scb_WAW: 12 WO_Scb_Pred:319 WO _Stall:98578 WL:77 W2:24 W3:82 W4:16 W5:0 W6:0

O W8:0 W9:0 WI1O0:0 W1l:0 W12:0 W13:0 W14:0 WL5:0 W16:0 WL7:0 W18:0 W19:0 W20:0 W21:0 W22:0 W23:0 W24:0

create .xIsx spreadsheets with

1:10929 2:4096 3:0 4:0 5:0 6:0 7:0 8:0 9:0 10:6 11:0 12:0

nA A%.n : X y. A 4. A P e . O - . A "G . A
PACHC 21:0 22:0 23:0 24:0 25:0 20:0 2/7:0 28:0 PAHC

30:0 31:0 32:0 1
Global/Local Load Access Count Distribution: h I h _Va‘ u e d ata re — d rawn
] 3'7 2:26 3:11 4:0 5:0 6:0 7:0 8:0 9:0 10:606 11:0 12:0 3:0 $:0 15:0 65:0 7:0 18:0 19:0 ’

21:0 22:0 23:06 24:0 25:0 26:0 27:0

\‘lenl ‘TDIF Access Count Distribution

‘0 5:0 6:0 7:0 8:0 9:0 lH 0 11:0 2:0 3:0 4:0 5:0 16:06 /:0 8:0 9:0 20
) 24:0 25:0 26:0 27:06 28:0 29:6 30:0 31:( 32:0




Some Fun Numbers

* [he results presented in the graphs and charts in this thesis
represent simulation times that on a single CPU would have
consumed approximately...

22,000+ hours
-or- 922+ days

-0or- 30+ months!!!




