Basic equivalence relation for inverter structures.
Function:
(defun inverter-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (inverter-p acl2::x) (inverter-p acl2::y)))) (equal (inverter-fix acl2::x) (inverter-fix acl2::y)))
Theorem:
(defthm inverter-equiv-is-an-equivalence (and (booleanp (inverter-equiv x y)) (inverter-equiv x x) (implies (inverter-equiv x y) (inverter-equiv y x)) (implies (and (inverter-equiv x y) (inverter-equiv y z)) (inverter-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm inverter-equiv-implies-equal-inverter-fix-1 (implies (inverter-equiv acl2::x x-equiv) (equal (inverter-fix acl2::x) (inverter-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm inverter-fix-under-inverter-equiv (inverter-equiv (inverter-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-inverter-fix-1-forward-to-inverter-equiv (implies (equal (inverter-fix acl2::x) acl2::y) (inverter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-inverter-fix-2-forward-to-inverter-equiv (implies (equal acl2::x (inverter-fix acl2::y)) (inverter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm inverter-equiv-of-inverter-fix-1-forward (implies (inverter-equiv (inverter-fix acl2::x) acl2::y) (inverter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm inverter-equiv-of-inverter-fix-2-forward (implies (inverter-equiv acl2::x (inverter-fix acl2::y)) (inverter-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)