Get the output field from a inverter.
(inverter->output x) → output
This is an ordinary field accessor created by defprod.
Function:
(defun inverter->output$inline (x) (declare (xargs :guard (inverter-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'inverter->output)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (sig-path-fix (cdr (std::da-nth 1 x)))) :exec (cdr (std::da-nth 1 x)))))
Theorem:
(defthm sig-path-p-of-inverter->output (b* ((output (inverter->output$inline x))) (sig-path-p output)) :rule-classes :rewrite)
Theorem:
(defthm inverter->output$inline-of-inverter-fix-x (equal (inverter->output$inline (inverter-fix x)) (inverter->output$inline x)))
Theorem:
(defthm inverter->output$inline-inverter-equiv-congruence-on-x (implies (inverter-equiv x x-equiv) (equal (inverter->output$inline x) (inverter->output$inline x-equiv))) :rule-classes :congruence)