Equivalence of faig constants (faig-const-p).
Two objects are faig-const-equiv if their faig-const-fixes are equal.Function:
(defun faig-const-equiv (x y) (and (equal (faig-const-fix x) (faig-const-fix y))))
Function:
(defun faig-const-equiv (x y) (and (equal (faig-const-fix x) (faig-const-fix y))))
Theorem:
(defthm faig-const-equiv-is-an-equivalence (and (booleanp (faig-const-equiv x y)) (faig-const-equiv x x) (implies (faig-const-equiv x y) (faig-const-equiv y x)) (implies (and (faig-const-equiv x y) (faig-const-equiv y z)) (faig-const-equiv x z))) :rule-classes (:equivalence))