Syntactic equivalence of faigs under faig-fix.
Two objects are faig-fix-equiv if their faig-fixes are equal.Function:
(defun faig-fix-equiv (x y) (and (equal (faig-fix x) (faig-fix y))))
Function:
(defun faig-fix-equiv (x y) (and (equal (faig-fix x) (faig-fix y))))
Theorem:
(defthm faig-fix-equiv-is-an-equivalence (and (booleanp (faig-fix-equiv x y)) (faig-fix-equiv x x) (implies (faig-fix-equiv x y) (faig-fix-equiv y x)) (implies (and (faig-fix-equiv x y) (faig-fix-equiv y z)) (faig-fix-equiv x z))) :rule-classes (:equivalence))