Basic equivalence relation for svexl-node structures.
Function:
(defun svexl-node-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (svexl-node-p acl2::x) (svexl-node-p acl2::y)))) (equal (svexl-node-fix acl2::x) (svexl-node-fix acl2::y)))
Theorem:
(defthm svexl-node-equiv-is-an-equivalence (and (booleanp (svexl-node-equiv x y)) (svexl-node-equiv x x) (implies (svexl-node-equiv x y) (svexl-node-equiv y x)) (implies (and (svexl-node-equiv x y) (svexl-node-equiv y z)) (svexl-node-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svexl-node-equiv-implies-equal-svexl-node-fix-1 (implies (svexl-node-equiv acl2::x x-equiv) (equal (svexl-node-fix acl2::x) (svexl-node-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svexl-node-fix-under-svexl-node-equiv (svexl-node-equiv (svexl-node-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svexl-node-fix-1-forward-to-svexl-node-equiv (implies (equal (svexl-node-fix acl2::x) acl2::y) (svexl-node-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svexl-node-fix-2-forward-to-svexl-node-equiv (implies (equal acl2::x (svexl-node-fix acl2::y)) (svexl-node-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm svexl-node-equiv-of-svexl-node-fix-1-forward (implies (svexl-node-equiv (svexl-node-fix acl2::x) acl2::y) (svexl-node-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm svexl-node-equiv-of-svexl-node-fix-2-forward (implies (svexl-node-equiv acl2::x (svexl-node-fix acl2::y)) (svexl-node-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)