Basic equivalence relation for ringosc3 structures.
Function:
(defun ringosc3-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ringosc3-p acl2::x) (ringosc3-p acl2::y)))) (equal (ringosc3-fix acl2::x) (ringosc3-fix acl2::y)))
Theorem:
(defthm ringosc3-equiv-is-an-equivalence (and (booleanp (ringosc3-equiv x y)) (ringosc3-equiv x x) (implies (ringosc3-equiv x y) (ringosc3-equiv y x)) (implies (and (ringosc3-equiv x y) (ringosc3-equiv y z)) (ringosc3-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ringosc3-equiv-implies-equal-ringosc3-fix-1 (implies (ringosc3-equiv acl2::x x-equiv) (equal (ringosc3-fix acl2::x) (ringosc3-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ringosc3-fix-under-ringosc3-equiv (ringosc3-equiv (ringosc3-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ringosc3-fix-1-forward-to-ringosc3-equiv (implies (equal (ringosc3-fix acl2::x) acl2::y) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ringosc3-fix-2-forward-to-ringosc3-equiv (implies (equal acl2::x (ringosc3-fix acl2::y)) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ringosc3-equiv-of-ringosc3-fix-1-forward (implies (ringosc3-equiv (ringosc3-fix acl2::x) acl2::y) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ringosc3-equiv-of-ringosc3-fix-2-forward (implies (ringosc3-equiv acl2::x (ringosc3-fix acl2::y)) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)