Get the inv2 field from a ringosc3.
(ringosc3->inv2 x) → inv2
This is an ordinary field accessor created by defprod.
Function:
(defun ringosc3->inv2$inline (x) (declare (xargs :guard (ringosc3-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'ringosc3->inv2)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (inverter-fix (cdr (std::da-nth 4 x)))) :exec (cdr (std::da-nth 4 x)))))
Theorem:
(defthm inverter-p-of-ringosc3->inv2 (b* ((inv2 (ringosc3->inv2$inline x))) (inverter-p inv2)) :rule-classes :rewrite)
Theorem:
(defthm ringosc3->inv2$inline-of-ringosc3-fix-x (equal (ringosc3->inv2$inline (ringosc3-fix x)) (ringosc3->inv2$inline x)))
Theorem:
(defthm ringosc3->inv2$inline-ringosc3-equiv-congruence-on-x (implies (ringosc3-equiv x x-equiv) (equal (ringosc3->inv2$inline x) (ringosc3->inv2$inline x-equiv))) :rule-classes :congruence)