Fixing function for ringosc3 structures.
(ringosc3-fix x) → new-x
Function:
(defun ringosc3-fix$inline (x) (declare (xargs :guard (ringosc3-p x))) (let ((acl2::__function__ 'ringosc3-fix)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((n1 (sig-path-fix (cdr (std::da-nth 0 x)))) (n2 (sig-path-fix (cdr (std::da-nth 1 x)))) (n3 (sig-path-fix (cdr (std::da-nth 2 x)))) (inv1 (inverter-fix (cdr (std::da-nth 3 x)))) (inv2 (inverter-fix (cdr (std::da-nth 4 x)))) (inv3 (inverter-fix (cdr (std::da-nth 5 x))))) (list (cons 'n1 n1) (cons 'n2 n2) (cons 'n3 n3) (cons 'inv1 inv1) (cons 'inv2 inv2) (cons 'inv3 inv3))) :exec x)))
Theorem:
(defthm ringosc3-p-of-ringosc3-fix (b* ((new-x (ringosc3-fix$inline x))) (ringosc3-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm ringosc3-fix-when-ringosc3-p (implies (ringosc3-p x) (equal (ringosc3-fix x) x)))
Function:
(defun ringosc3-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (ringosc3-p acl2::x) (ringosc3-p acl2::y)))) (equal (ringosc3-fix acl2::x) (ringosc3-fix acl2::y)))
Theorem:
(defthm ringosc3-equiv-is-an-equivalence (and (booleanp (ringosc3-equiv x y)) (ringosc3-equiv x x) (implies (ringosc3-equiv x y) (ringosc3-equiv y x)) (implies (and (ringosc3-equiv x y) (ringosc3-equiv y z)) (ringosc3-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm ringosc3-equiv-implies-equal-ringosc3-fix-1 (implies (ringosc3-equiv acl2::x x-equiv) (equal (ringosc3-fix acl2::x) (ringosc3-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm ringosc3-fix-under-ringosc3-equiv (ringosc3-equiv (ringosc3-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-ringosc3-fix-1-forward-to-ringosc3-equiv (implies (equal (ringosc3-fix acl2::x) acl2::y) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-ringosc3-fix-2-forward-to-ringosc3-equiv (implies (equal acl2::x (ringosc3-fix acl2::y)) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ringosc3-equiv-of-ringosc3-fix-1-forward (implies (ringosc3-equiv (ringosc3-fix acl2::x) acl2::y) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm ringosc3-equiv-of-ringosc3-fix-2-forward (implies (ringosc3-equiv acl2::x (ringosc3-fix acl2::y)) (ringosc3-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)