Basic equivalence relation for pipeline-setup structures.
Function:
(defun pipeline-setup-equiv$inline (x y) (declare (xargs :guard (and (pipeline-setup-p x) (pipeline-setup-p y)))) (equal (pipeline-setup-fix x) (pipeline-setup-fix y)))
Theorem:
(defthm pipeline-setup-equiv-is-an-equivalence (and (booleanp (pipeline-setup-equiv x y)) (pipeline-setup-equiv x x) (implies (pipeline-setup-equiv x y) (pipeline-setup-equiv y x)) (implies (and (pipeline-setup-equiv x y) (pipeline-setup-equiv y z)) (pipeline-setup-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm pipeline-setup-equiv-implies-equal-pipeline-setup-fix-1 (implies (pipeline-setup-equiv x x-equiv) (equal (pipeline-setup-fix x) (pipeline-setup-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm pipeline-setup-fix-under-pipeline-setup-equiv (pipeline-setup-equiv (pipeline-setup-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-pipeline-setup-fix-1-forward-to-pipeline-setup-equiv (implies (equal (pipeline-setup-fix x) y) (pipeline-setup-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-pipeline-setup-fix-2-forward-to-pipeline-setup-equiv (implies (equal x (pipeline-setup-fix y)) (pipeline-setup-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm pipeline-setup-equiv-of-pipeline-setup-fix-1-forward (implies (pipeline-setup-equiv (pipeline-setup-fix x) y) (pipeline-setup-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm pipeline-setup-equiv-of-pipeline-setup-fix-2-forward (implies (pipeline-setup-equiv x (pipeline-setup-fix y)) (pipeline-setup-equiv x y)) :rule-classes :forward-chaining)