Basic equivalence relation for addnames-indices structures.
Function:
(defun addnames-indices-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (addnames-indices-p acl2::x) (addnames-indices-p acl2::y)))) (equal (addnames-indices-fix acl2::x) (addnames-indices-fix acl2::y)))
Theorem:
(defthm addnames-indices-equiv-is-an-equivalence (and (booleanp (addnames-indices-equiv x y)) (addnames-indices-equiv x x) (implies (addnames-indices-equiv x y) (addnames-indices-equiv y x)) (implies (and (addnames-indices-equiv x y) (addnames-indices-equiv y z)) (addnames-indices-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm addnames-indices-equiv-implies-equal-addnames-indices-fix-1 (implies (addnames-indices-equiv acl2::x x-equiv) (equal (addnames-indices-fix acl2::x) (addnames-indices-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm addnames-indices-fix-under-addnames-indices-equiv (addnames-indices-equiv (addnames-indices-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-addnames-indices-fix-1-forward-to-addnames-indices-equiv (implies (equal (addnames-indices-fix acl2::x) acl2::y) (addnames-indices-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-addnames-indices-fix-2-forward-to-addnames-indices-equiv (implies (equal acl2::x (addnames-indices-fix acl2::y)) (addnames-indices-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm addnames-indices-equiv-of-addnames-indices-fix-1-forward (implies (addnames-indices-equiv (addnames-indices-fix acl2::x) acl2::y) (addnames-indices-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm addnames-indices-equiv-of-addnames-indices-fix-2-forward (implies (addnames-indices-equiv acl2::x (addnames-indices-fix acl2::y)) (addnames-indices-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)