Basic equivalence relation for svar-split structures.
Function:
(defun svar-split-equiv$inline (x y) (declare (xargs :guard (and (svar-split-p x) (svar-split-p y)))) (equal (svar-split-fix x) (svar-split-fix y)))
Theorem:
(defthm svar-split-equiv-is-an-equivalence (and (booleanp (svar-split-equiv x y)) (svar-split-equiv x x) (implies (svar-split-equiv x y) (svar-split-equiv y x)) (implies (and (svar-split-equiv x y) (svar-split-equiv y z)) (svar-split-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svar-split-equiv-implies-equal-svar-split-fix-1 (implies (svar-split-equiv x x-equiv) (equal (svar-split-fix x) (svar-split-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svar-split-fix-under-svar-split-equiv (svar-split-equiv (svar-split-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svar-split-fix-1-forward-to-svar-split-equiv (implies (equal (svar-split-fix x) y) (svar-split-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svar-split-fix-2-forward-to-svar-split-equiv (implies (equal x (svar-split-fix y)) (svar-split-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svar-split-equiv-of-svar-split-fix-1-forward (implies (svar-split-equiv (svar-split-fix x) y) (svar-split-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svar-split-equiv-of-svar-split-fix-2-forward (implies (svar-split-equiv x (svar-split-fix y)) (svar-split-equiv x y)) :rule-classes :forward-chaining)