Fixing function for constraint-rule structures.
(constraint-rule-fix x) → new-x
Function:
(defun constraint-rule-fix$inline (x) (declare (xargs :guard (constraint-rule-p x))) (let ((__function__ 'constraint-rule-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((thmname (acl2::symbol-fix (car x))) (lit-alist (pseudo-term-subst-fix (car (cdr x)))) (syntaxp (pseudo-term-fix (cdr (cdr x))))) (cons thmname (cons lit-alist syntaxp))) :exec x)))
Theorem:
(defthm constraint-rule-p-of-constraint-rule-fix (b* ((new-x (constraint-rule-fix$inline x))) (constraint-rule-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm constraint-rule-fix-when-constraint-rule-p (implies (constraint-rule-p x) (equal (constraint-rule-fix x) x)))
Function:
(defun constraint-rule-equiv$inline (x y) (declare (xargs :guard (and (constraint-rule-p x) (constraint-rule-p y)))) (equal (constraint-rule-fix x) (constraint-rule-fix y)))
Theorem:
(defthm constraint-rule-equiv-is-an-equivalence (and (booleanp (constraint-rule-equiv x y)) (constraint-rule-equiv x x) (implies (constraint-rule-equiv x y) (constraint-rule-equiv y x)) (implies (and (constraint-rule-equiv x y) (constraint-rule-equiv y z)) (constraint-rule-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm constraint-rule-equiv-implies-equal-constraint-rule-fix-1 (implies (constraint-rule-equiv x x-equiv) (equal (constraint-rule-fix x) (constraint-rule-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm constraint-rule-fix-under-constraint-rule-equiv (constraint-rule-equiv (constraint-rule-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-constraint-rule-fix-1-forward-to-constraint-rule-equiv (implies (equal (constraint-rule-fix x) y) (constraint-rule-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-constraint-rule-fix-2-forward-to-constraint-rule-equiv (implies (equal x (constraint-rule-fix y)) (constraint-rule-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm constraint-rule-equiv-of-constraint-rule-fix-1-forward (implies (constraint-rule-equiv (constraint-rule-fix x) y) (constraint-rule-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm constraint-rule-equiv-of-constraint-rule-fix-2-forward (implies (constraint-rule-equiv x (constraint-rule-fix y)) (constraint-rule-equiv x y)) :rule-classes :forward-chaining)