Fixing function for svtv-composedata structures.
(svtv-composedata-fix x) → new-x
Function:
(defun svtv-composedata-fix$inline (x) (declare (xargs :guard (svtv-composedata-p x))) (let ((__function__ 'svtv-composedata-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((simp (svex-simpconfig-fix (std::prod-car x))) (nextstates (svex-alistlist-fix (std::prod-car (std::prod-cdr x)))) (input-substs (svex-alistlist-fix (std::prod-cdr (std::prod-cdr x))))) (std::prod-cons simp (std::prod-cons nextstates input-substs))) :exec x)))
Theorem:
(defthm svtv-composedata-p-of-svtv-composedata-fix (b* ((new-x (svtv-composedata-fix$inline x))) (svtv-composedata-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm svtv-composedata-fix-when-svtv-composedata-p (implies (svtv-composedata-p x) (equal (svtv-composedata-fix x) x)))
Function:
(defun svtv-composedata-equiv$inline (x y) (declare (xargs :guard (and (svtv-composedata-p x) (svtv-composedata-p y)))) (equal (svtv-composedata-fix x) (svtv-composedata-fix y)))
Theorem:
(defthm svtv-composedata-equiv-is-an-equivalence (and (booleanp (svtv-composedata-equiv x y)) (svtv-composedata-equiv x x) (implies (svtv-composedata-equiv x y) (svtv-composedata-equiv y x)) (implies (and (svtv-composedata-equiv x y) (svtv-composedata-equiv y z)) (svtv-composedata-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svtv-composedata-equiv-implies-equal-svtv-composedata-fix-1 (implies (svtv-composedata-equiv x x-equiv) (equal (svtv-composedata-fix x) (svtv-composedata-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-composedata-fix-under-svtv-composedata-equiv (svtv-composedata-equiv (svtv-composedata-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svtv-composedata-fix-1-forward-to-svtv-composedata-equiv (implies (equal (svtv-composedata-fix x) y) (svtv-composedata-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svtv-composedata-fix-2-forward-to-svtv-composedata-equiv (implies (equal x (svtv-composedata-fix y)) (svtv-composedata-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-composedata-equiv-of-svtv-composedata-fix-1-forward (implies (svtv-composedata-equiv (svtv-composedata-fix x) y) (svtv-composedata-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-composedata-equiv-of-svtv-composedata-fix-2-forward (implies (svtv-composedata-equiv x (svtv-composedata-fix y)) (svtv-composedata-equiv x y)) :rule-classes :forward-chaining)