Basic equivalence relation for 3col4vecline structures.
Function:
(defun 3col4vecline-equiv$inline (x y) (declare (xargs :guard (and (3col4vecline-p x) (3col4vecline-p y)))) (equal (3col4vecline-fix x) (3col4vecline-fix y)))
Theorem:
(defthm 3col4vecline-equiv-is-an-equivalence (and (booleanp (3col4vecline-equiv x y)) (3col4vecline-equiv x x) (implies (3col4vecline-equiv x y) (3col4vecline-equiv y x)) (implies (and (3col4vecline-equiv x y) (3col4vecline-equiv y z)) (3col4vecline-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm 3col4vecline-equiv-implies-equal-3col4vecline-fix-1 (implies (3col4vecline-equiv x x-equiv) (equal (3col4vecline-fix x) (3col4vecline-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm 3col4vecline-fix-under-3col4vecline-equiv (3col4vecline-equiv (3col4vecline-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-3col4vecline-fix-1-forward-to-3col4vecline-equiv (implies (equal (3col4vecline-fix x) y) (3col4vecline-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-3col4vecline-fix-2-forward-to-3col4vecline-equiv (implies (equal x (3col4vecline-fix y)) (3col4vecline-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm 3col4vecline-equiv-of-3col4vecline-fix-1-forward (implies (3col4vecline-equiv (3col4vecline-fix x) y) (3col4vecline-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm 3col4vecline-equiv-of-3col4vecline-fix-2-forward (implies (3col4vecline-equiv x (3col4vecline-fix y)) (3col4vecline-equiv x y)) :rule-classes :forward-chaining)