Fixing function for svtv-fsm structures.
(svtv-fsm-fix x) → new-x
Function:
(defun svtv-fsm-fix$inline (x) (declare (xargs :guard (svtv-fsm-p x))) (let ((__function__ 'svtv-fsm-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((fsm (fsm-fix (cdr (std::da-nth 0 x)))) (namemap (svtv-name-lhs-map-fix (cdr (std::da-nth 1 x))))) (list (cons 'fsm fsm) (cons 'namemap namemap))) :exec x)))
Theorem:
(defthm svtv-fsm-p-of-svtv-fsm-fix (b* ((new-x (svtv-fsm-fix$inline x))) (svtv-fsm-p new-x)) :rule-classes :rewrite)
Theorem:
(defthm svtv-fsm-fix-when-svtv-fsm-p (implies (svtv-fsm-p x) (equal (svtv-fsm-fix x) x)))
Function:
(defun svtv-fsm-equiv$inline (x y) (declare (xargs :guard (and (svtv-fsm-p x) (svtv-fsm-p y)))) (equal (svtv-fsm-fix x) (svtv-fsm-fix y)))
Theorem:
(defthm svtv-fsm-equiv-is-an-equivalence (and (booleanp (svtv-fsm-equiv x y)) (svtv-fsm-equiv x x) (implies (svtv-fsm-equiv x y) (svtv-fsm-equiv y x)) (implies (and (svtv-fsm-equiv x y) (svtv-fsm-equiv y z)) (svtv-fsm-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svtv-fsm-equiv-implies-equal-svtv-fsm-fix-1 (implies (svtv-fsm-equiv x x-equiv) (equal (svtv-fsm-fix x) (svtv-fsm-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svtv-fsm-fix-under-svtv-fsm-equiv (svtv-fsm-equiv (svtv-fsm-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svtv-fsm-fix-1-forward-to-svtv-fsm-equiv (implies (equal (svtv-fsm-fix x) y) (svtv-fsm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svtv-fsm-fix-2-forward-to-svtv-fsm-equiv (implies (equal x (svtv-fsm-fix y)) (svtv-fsm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-fsm-equiv-of-svtv-fsm-fix-1-forward (implies (svtv-fsm-equiv (svtv-fsm-fix x) y) (svtv-fsm-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm svtv-fsm-equiv-of-svtv-fsm-fix-2-forward (implies (svtv-fsm-equiv x (svtv-fsm-fix y)) (svtv-fsm-equiv x y)) :rule-classes :forward-chaining)