Basic equivalence relation for svl-occ structures.
Function:
(defun svl-occ-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (svl-occ-p acl2::x) (svl-occ-p acl2::y)))) (equal (svl-occ-fix acl2::x) (svl-occ-fix acl2::y)))
Theorem:
(defthm svl-occ-equiv-is-an-equivalence (and (booleanp (svl-occ-equiv x y)) (svl-occ-equiv x x) (implies (svl-occ-equiv x y) (svl-occ-equiv y x)) (implies (and (svl-occ-equiv x y) (svl-occ-equiv y z)) (svl-occ-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm svl-occ-equiv-implies-equal-svl-occ-fix-1 (implies (svl-occ-equiv acl2::x x-equiv) (equal (svl-occ-fix acl2::x) (svl-occ-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm svl-occ-fix-under-svl-occ-equiv (svl-occ-equiv (svl-occ-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-svl-occ-fix-1-forward-to-svl-occ-equiv (implies (equal (svl-occ-fix acl2::x) acl2::y) (svl-occ-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-svl-occ-fix-2-forward-to-svl-occ-equiv (implies (equal acl2::x (svl-occ-fix acl2::y)) (svl-occ-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm svl-occ-equiv-of-svl-occ-fix-1-forward (implies (svl-occ-equiv (svl-occ-fix acl2::x) acl2::y) (svl-occ-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm svl-occ-equiv-of-svl-occ-fix-2-forward (implies (svl-occ-equiv acl2::x (svl-occ-fix acl2::y)) (svl-occ-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)