Get the module field from a sig.
This is an ordinary field accessor created by defprod.
Function:
(defun sig->module$inline (x) (declare (xargs :guard (sig-p x))) (declare (xargs :guard t)) (let ((acl2::__function__ 'sig->module)) (declare (ignorable acl2::__function__)) (mbe :logic (b* ((x (and t x))) (symbol-fix (cdr (std::da-nth 0 x)))) :exec (cdr (std::da-nth 0 x)))))
Theorem:
(defthm symbolp-of-sig->module (b* ((module (sig->module$inline x))) (symbolp module)) :rule-classes :rewrite)
Theorem:
(defthm sig->module$inline-of-sig-fix-x (equal (sig->module$inline (sig-fix x)) (sig->module$inline x)))
Theorem:
(defthm sig->module$inline-sig-equiv-congruence-on-x (implies (sig-equiv x x-equiv) (equal (sig->module$inline x) (sig->module$inline x-equiv))) :rule-classes :congruence)