Get the syndef::id field from a syndef::acid4.
(syndef::|acid4->id| syndef::x) → syndef::|id|
This is an ordinary field accessor created by fty::defprod.
Function:
(defun syndef::|acid4->id$INLINE| (syndef::x) (declare (xargs :guard (syndef::|acid4-P| syndef::x))) (declare (xargs :guard t)) (let ((__function__ 'syndef::|acid4->id|)) (declare (ignorable __function__)) (mbe :logic (b* ((syndef::x (and t syndef::x))) (ifix (cdr (std::da-nth 0 (cdr syndef::x))))) :exec (cdr (std::da-nth 0 (cdr syndef::x))))))
Theorem:
(defthm syndef::|INTEGERP-OF-acid4->id| (b* ((syndef::|id| (syndef::|acid4->id$INLINE| syndef::x))) (integerp syndef::|id|)) :rule-classes :rewrite)
Theorem:
(defthm syndef::|acid4->id$INLINE-OF-acid4-FIX-X| (equal (syndef::|acid4->id$INLINE| (syndef::|acid4-FIX| syndef::x)) (syndef::|acid4->id$INLINE| syndef::x)))
Theorem:
(defthm syndef::|acid4->id$INLINE-acid4-EQUIV-CONGRUENCE-ON-X| (implies (syndef::|acid4-EQUIV| syndef::x syndef::x-equiv) (equal (syndef::|acid4->id$INLINE| syndef::x) (syndef::|acid4->id$INLINE| syndef::x-equiv))) :rule-classes :congruence)