Recognizer for sym-prod structures.
(sym-prod-p x) → *
Function:
(defun sym-prod-p (x) (declare (xargs :guard t)) (let ((acl2::__function__ 'sym-prod-p)) (declare (ignorable acl2::__function__)) (and (mbe :logic (and (alistp x) (equal (strip-cars x) '(sym))) :exec (fty::alist-with-carsp x '(sym))) (b* ((sym (cdr (std::da-nth 0 x)))) (symbolp sym)))))
Theorem:
(defthm consp-when-sym-prod-p (implies (sym-prod-p x) (consp x)) :rule-classes :compound-recognizer)