Basic equivalence relation for neteval-ordering structures.
Function:
(defun neteval-ordering-equiv$inline (x y) (declare (xargs :guard (and (neteval-ordering-p x) (neteval-ordering-p y)))) (equal (neteval-ordering-fix x) (neteval-ordering-fix y)))
Theorem:
(defthm neteval-ordering-equiv-is-an-equivalence (and (booleanp (neteval-ordering-equiv x y)) (neteval-ordering-equiv x x) (implies (neteval-ordering-equiv x y) (neteval-ordering-equiv y x)) (implies (and (neteval-ordering-equiv x y) (neteval-ordering-equiv y z)) (neteval-ordering-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm neteval-ordering-equiv-implies-equal-neteval-ordering-fix-1 (implies (neteval-ordering-equiv x x-equiv) (equal (neteval-ordering-fix x) (neteval-ordering-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm neteval-ordering-fix-under-neteval-ordering-equiv (neteval-ordering-equiv (neteval-ordering-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-neteval-ordering-fix-1-forward-to-neteval-ordering-equiv (implies (equal (neteval-ordering-fix x) y) (neteval-ordering-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-neteval-ordering-fix-2-forward-to-neteval-ordering-equiv (implies (equal x (neteval-ordering-fix y)) (neteval-ordering-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm neteval-ordering-equiv-of-neteval-ordering-fix-1-forward (implies (neteval-ordering-equiv (neteval-ordering-fix x) y) (neteval-ordering-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm neteval-ordering-equiv-of-neteval-ordering-fix-2-forward (implies (neteval-ordering-equiv x (neteval-ordering-fix y)) (neteval-ordering-equiv x y)) :rule-classes :forward-chaining)