Recognizer for neteval-ordering.
(neteval-ordering-p x) → *
Theorem:
(defthm neteval-ordering-p-of-union-equal (equal (neteval-ordering-p (union-equal x y)) (and (neteval-ordering-p (list-fix x)) (neteval-ordering-p (double-rewrite y)))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-intersection-equal-2 (implies (neteval-ordering-p (double-rewrite y)) (neteval-ordering-p (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-intersection-equal-1 (implies (neteval-ordering-p (double-rewrite x)) (neteval-ordering-p (intersection-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-set-difference-equal (implies (neteval-ordering-p x) (neteval-ordering-p (set-difference-equal x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-when-subsetp-equal (and (implies (and (subsetp-equal x y) (neteval-ordering-p y)) (equal (neteval-ordering-p x) (true-listp x))) (implies (and (neteval-ordering-p y) (subsetp-equal x y)) (equal (neteval-ordering-p x) (true-listp x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-rcons (iff (neteval-ordering-p (acl2::rcons acl2::a x)) (and (and (consp acl2::a) (svar-p (car acl2::a)) (neteval-sigordering-p (cdr acl2::a))) (neteval-ordering-p (list-fix x)))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-append (equal (neteval-ordering-p (append acl2::a acl2::b)) (and (neteval-ordering-p (list-fix acl2::a)) (neteval-ordering-p acl2::b))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-repeat (iff (neteval-ordering-p (repeat acl2::n x)) (or (and (consp x) (svar-p (car x)) (neteval-sigordering-p (cdr x))) (zp acl2::n))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-rev (equal (neteval-ordering-p (rev x)) (neteval-ordering-p (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-list-fix (implies (neteval-ordering-p x) (neteval-ordering-p (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-neteval-ordering-p-compound-recognizer (implies (neteval-ordering-p x) (true-listp x)) :rule-classes :compound-recognizer)
Theorem:
(defthm neteval-ordering-p-when-not-consp (implies (not (consp x)) (equal (neteval-ordering-p x) (not x))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-cdr-when-neteval-ordering-p (implies (neteval-ordering-p (double-rewrite x)) (neteval-ordering-p (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-cons (equal (neteval-ordering-p (cons acl2::a x)) (and (and (consp acl2::a) (svar-p (car acl2::a)) (neteval-sigordering-p (cdr acl2::a))) (neteval-ordering-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-remove-assoc (implies (neteval-ordering-p x) (neteval-ordering-p (remove-assoc-equal acl2::name x))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-put-assoc (implies (and (neteval-ordering-p x)) (iff (neteval-ordering-p (put-assoc-equal acl2::name acl2::val x)) (and (svar-p acl2::name) (neteval-sigordering-p acl2::val)))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-fast-alist-clean (implies (neteval-ordering-p x) (neteval-ordering-p (fast-alist-clean x))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-hons-shrink-alist (implies (and (neteval-ordering-p x) (neteval-ordering-p y)) (neteval-ordering-p (hons-shrink-alist x y))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-ordering-p-of-hons-acons (equal (neteval-ordering-p (hons-acons acl2::a acl2::n x)) (and (svar-p acl2::a) (neteval-sigordering-p acl2::n) (neteval-ordering-p x))) :rule-classes ((:rewrite)))
Theorem:
(defthm neteval-sigordering-p-of-cdr-of-hons-assoc-equal-when-neteval-ordering-p (implies (neteval-ordering-p x) (iff (neteval-sigordering-p (cdr (hons-assoc-equal acl2::k x))) (or (hons-assoc-equal acl2::k x) (neteval-sigordering-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-neteval-ordering-p-rewrite (implies (neteval-ordering-p x) (alistp x)) :rule-classes ((:rewrite)))
Theorem:
(defthm alistp-when-neteval-ordering-p (implies (neteval-ordering-p x) (alistp x)) :rule-classes :tau-system)
Theorem:
(defthm neteval-sigordering-p-of-cdar-when-neteval-ordering-p (implies (neteval-ordering-p x) (iff (neteval-sigordering-p (cdar x)) (or (consp x) (neteval-sigordering-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm svar-p-of-caar-when-neteval-ordering-p (implies (neteval-ordering-p x) (iff (svar-p (caar x)) (or (consp x) (svar-p nil)))) :rule-classes ((:rewrite)))