This is a universal equivalence, introduced using ACL2::def-universal-equiv.
Function:
(defun nth-lit-equiv (x acl2::y) (declare (xargs :non-executable t)) (declare (xargs :guard t)) (prog2$ (acl2::throw-nonexec-error 'nth-lit-equiv (list x acl2::y)) (let ((n (nth-lit-equiv-witness x acl2::y))) (and (equal (nth-lit n x) (nth-lit n acl2::y))))))
Theorem:
(defthm nth-lit-equiv-necc (implies (not (and (equal (nth-lit n x) (nth-lit n acl2::y)))) (not (nth-lit-equiv x acl2::y))))
Theorem:
(defthm nth-lit-equiv-is-an-equivalence (and (booleanp (nth-lit-equiv x y)) (nth-lit-equiv x x) (implies (nth-lit-equiv x y) (nth-lit-equiv y x)) (implies (and (nth-lit-equiv x y) (nth-lit-equiv y z)) (nth-lit-equiv x z))) :rule-classes (:equivalence))