Basic equivalence relation for bfr-updates structures.
Function:
(defun bfr-updates-equiv$inline (x y) (declare (xargs :guard (and (bfr-updates-p x) (bfr-updates-p y)))) (equal (bfr-updates-fix x) (bfr-updates-fix y)))
Theorem:
(defthm bfr-updates-equiv-is-an-equivalence (and (booleanp (bfr-updates-equiv x y)) (bfr-updates-equiv x x) (implies (bfr-updates-equiv x y) (bfr-updates-equiv y x)) (implies (and (bfr-updates-equiv x y) (bfr-updates-equiv y z)) (bfr-updates-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm bfr-updates-equiv-implies-equal-bfr-updates-fix-1 (implies (bfr-updates-equiv x x-equiv) (equal (bfr-updates-fix x) (bfr-updates-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm bfr-updates-fix-under-bfr-updates-equiv (bfr-updates-equiv (bfr-updates-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-bfr-updates-fix-1-forward-to-bfr-updates-equiv (implies (equal (bfr-updates-fix x) y) (bfr-updates-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-bfr-updates-fix-2-forward-to-bfr-updates-equiv (implies (equal x (bfr-updates-fix y)) (bfr-updates-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm bfr-updates-equiv-of-bfr-updates-fix-1-forward (implies (bfr-updates-equiv (bfr-updates-fix x) y) (bfr-updates-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm bfr-updates-equiv-of-bfr-updates-fix-2-forward (implies (bfr-updates-equiv x (bfr-updates-fix y)) (bfr-updates-equiv x y)) :rule-classes :forward-chaining)