Basic equivalence relation for sig-table structures.
Function:
(defun sig-table-equiv$inline (x y) (declare (xargs :guard (and (sig-table-p x) (sig-table-p y)))) (equal (sig-table-fix x) (sig-table-fix y)))
Theorem:
(defthm sig-table-equiv-is-an-equivalence (and (booleanp (sig-table-equiv x y)) (sig-table-equiv x x) (implies (sig-table-equiv x y) (sig-table-equiv y x)) (implies (and (sig-table-equiv x y) (sig-table-equiv y z)) (sig-table-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm sig-table-equiv-implies-equal-sig-table-fix-1 (implies (sig-table-equiv x x-equiv) (equal (sig-table-fix x) (sig-table-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm sig-table-fix-under-sig-table-equiv (sig-table-equiv (sig-table-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-sig-table-fix-1-forward-to-sig-table-equiv (implies (equal (sig-table-fix x) y) (sig-table-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-sig-table-fix-2-forward-to-sig-table-equiv (implies (equal x (sig-table-fix y)) (sig-table-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm sig-table-equiv-of-sig-table-fix-1-forward (implies (sig-table-equiv (sig-table-fix x) y) (sig-table-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm sig-table-equiv-of-sig-table-fix-2-forward (implies (sig-table-equiv x (sig-table-fix y)) (sig-table-equiv x y)) :rule-classes :forward-chaining)