Basic equivalence relation for truthmap structures.
Function:
(defun truthmap-equiv$inline (x acl2::y) (declare (xargs :guard (and (truthmap-p x) (truthmap-p acl2::y)))) (equal (truthmap-fix x) (truthmap-fix acl2::y)))
Theorem:
(defthm truthmap-equiv-is-an-equivalence (and (booleanp (truthmap-equiv x y)) (truthmap-equiv x x) (implies (truthmap-equiv x y) (truthmap-equiv y x)) (implies (and (truthmap-equiv x y) (truthmap-equiv y z)) (truthmap-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm truthmap-equiv-implies-equal-truthmap-fix-1 (implies (truthmap-equiv x x-equiv) (equal (truthmap-fix x) (truthmap-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm truthmap-fix-under-truthmap-equiv (truthmap-equiv (truthmap-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-truthmap-fix-1-forward-to-truthmap-equiv (implies (equal (truthmap-fix x) acl2::y) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-truthmap-fix-2-forward-to-truthmap-equiv (implies (equal x (truthmap-fix acl2::y)) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm truthmap-equiv-of-truthmap-fix-1-forward (implies (truthmap-equiv (truthmap-fix x) acl2::y) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm truthmap-equiv-of-truthmap-fix-2-forward (implies (truthmap-equiv x (truthmap-fix acl2::y)) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)