(truthmap-fix x) is an ACL2::fty alist fixing function that follows the drop-keys strategy.
(truthmap-fix x) → fty::newx
Note that in the execution this is just an inline identity function.
Function:
(defun truthmap-fix$inline (x) (declare (xargs :guard (truthmap-p x))) (let ((__function__ 'truthmap-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) x (let ((rest (truthmap-fix (cdr x)))) (if (and (consp (car x)) (truth::truth4-p (caar x))) (let ((fty::first-key (caar x)) (fty::first-val (lit-list-fix (cdar x)))) (cons (cons fty::first-key fty::first-val) rest)) rest))) :exec x)))
Theorem:
(defthm truthmap-p-of-truthmap-fix (b* ((fty::newx (truthmap-fix$inline x))) (truthmap-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm truthmap-fix-when-truthmap-p (implies (truthmap-p x) (equal (truthmap-fix x) x)))
Function:
(defun truthmap-equiv$inline (x acl2::y) (declare (xargs :guard (and (truthmap-p x) (truthmap-p acl2::y)))) (equal (truthmap-fix x) (truthmap-fix acl2::y)))
Theorem:
(defthm truthmap-equiv-is-an-equivalence (and (booleanp (truthmap-equiv x y)) (truthmap-equiv x x) (implies (truthmap-equiv x y) (truthmap-equiv y x)) (implies (and (truthmap-equiv x y) (truthmap-equiv y z)) (truthmap-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm truthmap-equiv-implies-equal-truthmap-fix-1 (implies (truthmap-equiv x x-equiv) (equal (truthmap-fix x) (truthmap-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm truthmap-fix-under-truthmap-equiv (truthmap-equiv (truthmap-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-truthmap-fix-1-forward-to-truthmap-equiv (implies (equal (truthmap-fix x) acl2::y) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-truthmap-fix-2-forward-to-truthmap-equiv (implies (equal x (truthmap-fix acl2::y)) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm truthmap-equiv-of-truthmap-fix-1-forward (implies (truthmap-equiv (truthmap-fix x) acl2::y) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm truthmap-equiv-of-truthmap-fix-2-forward (implies (truthmap-equiv x (truthmap-fix acl2::y)) (truthmap-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-lit-list-fix-v-under-truthmap-equiv (truthmap-equiv (cons (cons acl2::k (lit-list-fix acl2::v)) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-lit-list-equiv-congruence-on-v-under-truthmap-equiv (implies (satlink::lit-list-equiv acl2::v v-equiv) (truthmap-equiv (cons (cons acl2::k acl2::v) x) (cons (cons acl2::k v-equiv) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-truthmap-fix-y-under-truthmap-equiv (truthmap-equiv (cons x (truthmap-fix acl2::y)) (cons x acl2::y)))
Theorem:
(defthm cons-truthmap-equiv-congruence-on-y-under-truthmap-equiv (implies (truthmap-equiv acl2::y y-equiv) (truthmap-equiv (cons x acl2::y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm truthmap-fix-of-acons (equal (truthmap-fix (cons (cons acl2::a acl2::b) x)) (let ((rest (truthmap-fix x))) (if (and (truth::truth4-p acl2::a)) (let ((fty::first-key acl2::a) (fty::first-val (lit-list-fix acl2::b))) (cons (cons fty::first-key fty::first-val) rest)) rest))))
Theorem:
(defthm hons-assoc-equal-of-truthmap-fix (equal (hons-assoc-equal acl2::k (truthmap-fix x)) (let ((fty::pair (hons-assoc-equal acl2::k x))) (and (truth::truth4-p acl2::k) fty::pair (cons acl2::k (lit-list-fix (cdr fty::pair)))))))
Theorem:
(defthm truthmap-fix-of-append (equal (truthmap-fix (append std::a std::b)) (append (truthmap-fix std::a) (truthmap-fix std::b))))
Theorem:
(defthm consp-car-of-truthmap-fix (equal (consp (car (truthmap-fix x))) (consp (truthmap-fix x))))