(axi-map-fix x) is an ACL2::fty alist fixing function that follows the fix-keys strategy.
Note that in the execution this is just an inline identity function.
Function:
(defun axi-map-fix$inline (x) (declare (xargs :guard (axi-map-p x))) (let ((__function__ 'axi-map-fix)) (declare (ignorable __function__)) (mbe :logic (if (atom x) x (if (consp (car x)) (cons (cons (axi-term-fix (caar x)) (axi-lit-fix (cdar x))) (axi-map-fix (cdr x))) (axi-map-fix (cdr x)))) :exec x)))
Theorem:
(defthm axi-map-p-of-axi-map-fix (b* ((fty::newx (axi-map-fix$inline x))) (axi-map-p fty::newx)) :rule-classes :rewrite)
Theorem:
(defthm axi-map-fix-when-axi-map-p (implies (axi-map-p x) (equal (axi-map-fix x) x)))
Function:
(defun axi-map-equiv$inline (x acl2::y) (declare (xargs :guard (and (axi-map-p x) (axi-map-p acl2::y)))) (equal (axi-map-fix x) (axi-map-fix acl2::y)))
Theorem:
(defthm axi-map-equiv-is-an-equivalence (and (booleanp (axi-map-equiv x y)) (axi-map-equiv x x) (implies (axi-map-equiv x y) (axi-map-equiv y x)) (implies (and (axi-map-equiv x y) (axi-map-equiv y z)) (axi-map-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm axi-map-equiv-implies-equal-axi-map-fix-1 (implies (axi-map-equiv x x-equiv) (equal (axi-map-fix x) (axi-map-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm axi-map-fix-under-axi-map-equiv (axi-map-equiv (axi-map-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-axi-map-fix-1-forward-to-axi-map-equiv (implies (equal (axi-map-fix x) acl2::y) (axi-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-axi-map-fix-2-forward-to-axi-map-equiv (implies (equal x (axi-map-fix acl2::y)) (axi-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm axi-map-equiv-of-axi-map-fix-1-forward (implies (axi-map-equiv (axi-map-fix x) acl2::y) (axi-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm axi-map-equiv-of-axi-map-fix-2-forward (implies (axi-map-equiv x (axi-map-fix acl2::y)) (axi-map-equiv x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm cons-of-axi-term-fix-k-under-axi-map-equiv (axi-map-equiv (cons (cons (axi-term-fix acl2::k) acl2::v) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-axi-term-equiv-congruence-on-k-under-axi-map-equiv (implies (axi-term-equiv acl2::k k-equiv) (axi-map-equiv (cons (cons acl2::k acl2::v) x) (cons (cons k-equiv acl2::v) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-axi-lit-fix-v-under-axi-map-equiv (axi-map-equiv (cons (cons acl2::k (axi-lit-fix acl2::v)) x) (cons (cons acl2::k acl2::v) x)))
Theorem:
(defthm cons-axi-lit-equiv-congruence-on-v-under-axi-map-equiv (implies (axi-lit-equiv acl2::v v-equiv) (axi-map-equiv (cons (cons acl2::k acl2::v) x) (cons (cons acl2::k v-equiv) x))) :rule-classes :congruence)
Theorem:
(defthm cons-of-axi-map-fix-y-under-axi-map-equiv (axi-map-equiv (cons x (axi-map-fix acl2::y)) (cons x acl2::y)))
Theorem:
(defthm cons-axi-map-equiv-congruence-on-y-under-axi-map-equiv (implies (axi-map-equiv acl2::y y-equiv) (axi-map-equiv (cons x acl2::y) (cons x y-equiv))) :rule-classes :congruence)
Theorem:
(defthm axi-map-fix-of-acons (equal (axi-map-fix (cons (cons acl2::a acl2::b) x)) (cons (cons (axi-term-fix acl2::a) (axi-lit-fix acl2::b)) (axi-map-fix x))))
Theorem:
(defthm axi-map-fix-of-append (equal (axi-map-fix (append std::a std::b)) (append (axi-map-fix std::a) (axi-map-fix std::b))))
Theorem:
(defthm consp-car-of-axi-map-fix (equal (consp (car (axi-map-fix x))) (consp (axi-map-fix x))))