Basic equivalence relation for alias-lst structures.
Function:
(defun alias-lst-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (alias-lst-p acl2::x) (alias-lst-p acl2::y)))) (equal (alias-lst-fix acl2::x) (alias-lst-fix acl2::y)))
Theorem:
(defthm alias-lst-equiv-is-an-equivalence (and (booleanp (alias-lst-equiv x y)) (alias-lst-equiv x x) (implies (alias-lst-equiv x y) (alias-lst-equiv y x)) (implies (and (alias-lst-equiv x y) (alias-lst-equiv y z)) (alias-lst-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm alias-lst-equiv-implies-equal-alias-lst-fix-1 (implies (alias-lst-equiv acl2::x x-equiv) (equal (alias-lst-fix acl2::x) (alias-lst-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm alias-lst-fix-under-alias-lst-equiv (alias-lst-equiv (alias-lst-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-alias-lst-fix-1-forward-to-alias-lst-equiv (implies (equal (alias-lst-fix acl2::x) acl2::y) (alias-lst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-alias-lst-fix-2-forward-to-alias-lst-equiv (implies (equal acl2::x (alias-lst-fix acl2::y)) (alias-lst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm alias-lst-equiv-of-alias-lst-fix-1-forward (implies (alias-lst-equiv (alias-lst-fix acl2::x) acl2::y) (alias-lst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm alias-lst-equiv-of-alias-lst-fix-2-forward (implies (alias-lst-equiv acl2::x (alias-lst-fix acl2::y)) (alias-lst-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)