Basic equivalence relation for equiv-contexts structures.
Function:
(defun equiv-contexts-equiv$inline (x y) (declare (xargs :guard (and (equiv-contextsp x) (equiv-contextsp y)))) (equal (equiv-contexts-fix x) (equiv-contexts-fix y)))
Theorem:
(defthm equiv-contexts-equiv-is-an-equivalence (and (booleanp (equiv-contexts-equiv x y)) (equiv-contexts-equiv x x) (implies (equiv-contexts-equiv x y) (equiv-contexts-equiv y x)) (implies (and (equiv-contexts-equiv x y) (equiv-contexts-equiv y z)) (equiv-contexts-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm equiv-contexts-equiv-implies-equal-equiv-contexts-fix-1 (implies (equiv-contexts-equiv x x-equiv) (equal (equiv-contexts-fix x) (equiv-contexts-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm equiv-contexts-fix-under-equiv-contexts-equiv (equiv-contexts-equiv (equiv-contexts-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-equiv-contexts-fix-1-forward-to-equiv-contexts-equiv (implies (equal (equiv-contexts-fix x) y) (equiv-contexts-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-equiv-contexts-fix-2-forward-to-equiv-contexts-equiv (implies (equal x (equiv-contexts-fix y)) (equiv-contexts-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equiv-contexts-equiv-of-equiv-contexts-fix-1-forward (implies (equiv-contexts-equiv (equiv-contexts-fix x) y) (equiv-contexts-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equiv-contexts-equiv-of-equiv-contexts-fix-2-forward (implies (equiv-contexts-equiv x (equiv-contexts-fix y)) (equiv-contexts-equiv x y)) :rule-classes :forward-chaining)