Fixing function for proof-obligation structures.
(proof-obligation-fix x) → new-x
Function:
(defun proof-obligation-fix$inline (x) (declare (xargs :guard (proof-obligationp x))) (let ((__function__ 'proof-obligation-fix)) (declare (ignorable __function__)) (mbe :logic (b* ((variables (typed-variable-list-fix (cdr (std::da-nth 0 x)))) (hypotheses (obligation-hyp-list-fix (cdr (std::da-nth 1 x)))) (conclusion (expression-fix (cdr (std::da-nth 2 x)))) (source-expression (expression-fix (cdr (std::da-nth 3 x))))) (list (cons 'variables variables) (cons 'hypotheses hypotheses) (cons 'conclusion conclusion) (cons 'source-expression source-expression))) :exec x)))
Theorem:
(defthm proof-obligationp-of-proof-obligation-fix (b* ((new-x (proof-obligation-fix$inline x))) (proof-obligationp new-x)) :rule-classes :rewrite)
Theorem:
(defthm proof-obligation-fix-when-proof-obligationp (implies (proof-obligationp x) (equal (proof-obligation-fix x) x)))
Function:
(defun proof-obligation-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (proof-obligationp acl2::x) (proof-obligationp acl2::y)))) (equal (proof-obligation-fix acl2::x) (proof-obligation-fix acl2::y)))
Theorem:
(defthm proof-obligation-equiv-is-an-equivalence (and (booleanp (proof-obligation-equiv x y)) (proof-obligation-equiv x x) (implies (proof-obligation-equiv x y) (proof-obligation-equiv y x)) (implies (and (proof-obligation-equiv x y) (proof-obligation-equiv y z)) (proof-obligation-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm proof-obligation-equiv-implies-equal-proof-obligation-fix-1 (implies (proof-obligation-equiv acl2::x x-equiv) (equal (proof-obligation-fix acl2::x) (proof-obligation-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm proof-obligation-fix-under-proof-obligation-equiv (proof-obligation-equiv (proof-obligation-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-proof-obligation-fix-1-forward-to-proof-obligation-equiv (implies (equal (proof-obligation-fix acl2::x) acl2::y) (proof-obligation-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-proof-obligation-fix-2-forward-to-proof-obligation-equiv (implies (equal acl2::x (proof-obligation-fix acl2::y)) (proof-obligation-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm proof-obligation-equiv-of-proof-obligation-fix-1-forward (implies (proof-obligation-equiv (proof-obligation-fix acl2::x) acl2::y) (proof-obligation-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm proof-obligation-equiv-of-proof-obligation-fix-2-forward (implies (proof-obligation-equiv acl2::x (proof-obligation-fix acl2::y)) (proof-obligation-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)