Fixing function for obligation-hyp structures.
(obligation-hyp-fix x) → new-x
Function:
(defun obligation-hyp-fix$inline (x) (declare (xargs :guard (obligation-hypp x))) (let ((__function__ 'obligation-hyp-fix)) (declare (ignorable __function__)) (mbe :logic (case (obligation-hyp-kind x) (:condition (b* ((get (expression-fix (std::da-nth 0 (cdr x))))) (cons :condition (list get)))) (:binding (b* ((get (binding-fix (std::da-nth 0 (cdr x))))) (cons :binding (list get))))) :exec x)))
Theorem:
(defthm obligation-hypp-of-obligation-hyp-fix (b* ((new-x (obligation-hyp-fix$inline x))) (obligation-hypp new-x)) :rule-classes :rewrite)
Theorem:
(defthm obligation-hyp-fix-when-obligation-hypp (implies (obligation-hypp x) (equal (obligation-hyp-fix x) x)))
Function:
(defun obligation-hyp-equiv$inline (acl2::x acl2::y) (declare (xargs :guard (and (obligation-hypp acl2::x) (obligation-hypp acl2::y)))) (equal (obligation-hyp-fix acl2::x) (obligation-hyp-fix acl2::y)))
Theorem:
(defthm obligation-hyp-equiv-is-an-equivalence (and (booleanp (obligation-hyp-equiv x y)) (obligation-hyp-equiv x x) (implies (obligation-hyp-equiv x y) (obligation-hyp-equiv y x)) (implies (and (obligation-hyp-equiv x y) (obligation-hyp-equiv y z)) (obligation-hyp-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm obligation-hyp-equiv-implies-equal-obligation-hyp-fix-1 (implies (obligation-hyp-equiv acl2::x x-equiv) (equal (obligation-hyp-fix acl2::x) (obligation-hyp-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm obligation-hyp-fix-under-obligation-hyp-equiv (obligation-hyp-equiv (obligation-hyp-fix acl2::x) acl2::x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-obligation-hyp-fix-1-forward-to-obligation-hyp-equiv (implies (equal (obligation-hyp-fix acl2::x) acl2::y) (obligation-hyp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-obligation-hyp-fix-2-forward-to-obligation-hyp-equiv (implies (equal acl2::x (obligation-hyp-fix acl2::y)) (obligation-hyp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm obligation-hyp-equiv-of-obligation-hyp-fix-1-forward (implies (obligation-hyp-equiv (obligation-hyp-fix acl2::x) acl2::y) (obligation-hyp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm obligation-hyp-equiv-of-obligation-hyp-fix-2-forward (implies (obligation-hyp-equiv acl2::x (obligation-hyp-fix acl2::y)) (obligation-hyp-equiv acl2::x acl2::y)) :rule-classes :forward-chaining)
Theorem:
(defthm obligation-hyp-kind$inline-of-obligation-hyp-fix-x (equal (obligation-hyp-kind$inline (obligation-hyp-fix x)) (obligation-hyp-kind$inline x)))
Theorem:
(defthm obligation-hyp-kind$inline-obligation-hyp-equiv-congruence-on-x (implies (obligation-hyp-equiv x x-equiv) (equal (obligation-hyp-kind$inline x) (obligation-hyp-kind$inline x-equiv))) :rule-classes :congruence)
Theorem:
(defthm consp-of-obligation-hyp-fix (consp (obligation-hyp-fix x)) :rule-classes :type-prescription)