Fixtype for dab-basep.
Function:
(defun dab-base-equiv$inline (x y) (declare (xargs :guard (and (dab-basep x) (dab-basep y)))) (equal (dab-base-fix x) (dab-base-fix y)))
Theorem:
(defthm dab-base-equiv-is-an-equivalence (and (booleanp (dab-base-equiv x y)) (dab-base-equiv x x) (implies (dab-base-equiv x y) (dab-base-equiv y x)) (implies (and (dab-base-equiv x y) (dab-base-equiv y z)) (dab-base-equiv x z))) :rule-classes (:equivalence))
Theorem:
(defthm dab-base-equiv-implies-equal-dab-base-fix-1 (implies (dab-base-equiv x x-equiv) (equal (dab-base-fix x) (dab-base-fix x-equiv))) :rule-classes (:congruence))
Theorem:
(defthm dab-base-fix-under-dab-base-equiv (dab-base-equiv (dab-base-fix x) x) :rule-classes (:rewrite :rewrite-quoted-constant))
Theorem:
(defthm equal-of-dab-base-fix-1-forward-to-dab-base-equiv (implies (equal (dab-base-fix x) y) (dab-base-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm equal-of-dab-base-fix-2-forward-to-dab-base-equiv (implies (equal x (dab-base-fix y)) (dab-base-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm dab-base-equiv-of-dab-base-fix-1-forward (implies (dab-base-equiv (dab-base-fix x) y) (dab-base-equiv x y)) :rule-classes :forward-chaining)
Theorem:
(defthm dab-base-equiv-of-dab-base-fix-2-forward (implies (dab-base-equiv x (dab-base-fix y)) (dab-base-equiv x y)) :rule-classes :forward-chaining)