Hints to prove a theorem directly from previously-proved theorems.
General Form: (previous-subsumer-hints term wrld)
where
ACL2 !>(previous-subsumer-hints '(equal (car (cons u v)) u) (w state)) (:BY CAR-CONS :DO-NOT *ALL-BUT-SIMPLIFY*) ACL2 !>:trans (and (equal (car (cons u v)) u) (equal (cdr (cons a b)) b)) (IF (EQUAL (CAR (CONS U V)) U) (EQUAL (CDR (CONS A B)) B) 'NIL) => * ACL2 !>(previous-subsumer-hints '(IF (EQUAL (CAR (CONS U V)) U) (EQUAL (CDR (CONS A B)) B) 'NIL) (w state)) (:USE ((:INSTANCE CAR-CONS (Y V) (X U)) (:INSTANCE CDR-CONS (Y B) (X A))) :IN-THEORY (THEORY 'MINIMAL-THEORY) :DO-NOT *ALL-BUT-SIMPLIFY*) ACL2 !>