Equivalence under bfix, i.e., bit equivalence.
Theorem:
(defthm nat-equiv-refines-bit-equiv (implies (nat-equiv x y) (bit-equiv x y)) :rule-classes (:refinement))
Theorem:
(defthm bit-equiv-implies-equal-zbp-1 (implies (bit-equiv a a-equiv) (equal (zbp a) (zbp a-equiv))) :rule-classes (:congruence))