Rules for resolving inequalities between exponents.
Theorem:
(defthm expt->-1 (implies (and (< 1 r) (< 0 i) (fc (real/rationalp r)) (fc (integerp i))) (< 1 (expt r i))) :rule-classes :linear)
Theorem:
(defthm expt-is-increasing-for-base>1 (implies (and (< 1 r) (< i j) (fc (real/rationalp r)) (fc (integerp i)) (fc (integerp j))) (< (expt r i) (expt r j))) :rule-classes (:rewrite :linear))
Theorem:
(defthm expt-is-decreasing-for-pos-base<1 (implies (and (< 0 r) (< r 1) (< i j) (fc (real/rationalp r)) (fc (integerp i)) (fc (integerp j))) (< (expt r j) (expt r i))))
Theorem:
(defthm expt-is-weakly-increasing-for-base>1 (implies (and (< 1 r) (<= i j) (fc (real/rationalp r)) (fc (integerp i)) (fc (integerp j))) (<= (expt r i) (expt r j))))
Theorem:
(defthm expt-is-weakly-decreasing-for-pos-base<1 (implies (and (< 0 r) (< r 1) (<= i j) (fc (real/rationalp r)) (fc (integerp i)) (fc (integerp j))) (<= (expt r j) (expt r i))))